To conserve the scenery and the natural and historic objects and the wild life therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations.

Organic Act
(39 Stat. 535, 16 U.S.C. 1)
Using the Guide

The design guidelines included within this document are intended to promote a consistent approach to campground changes and improvements. Users include all National Park Service staff and private contractors including planners, designers, superintendents, maintenance staff, concessioners and partners. The information is designed to assist all sizes and scopes of projects related to campgrounds and consequently some of the information is general in nature while other information is more detailed.

The document is broken up into sections to lead users through a common project sequence; however, the guide can be used at any point in a project or maintenance effort. Use the table of contents to quickly navigate to the desired section. Throughout the guide you will also find quick links to related sections to assist with navigation.

Document Objective

The National Park Service Second Century Campground Design Guidelines offer a consistent approach towards campground design and construction efforts across the service. “From its earliest days, the National Park Service has relied on shared standards to ensure that its services and facilities are appropriate, consistent, and of good quality” (Director’s Order [DO] #52C). Specifically, the guide provides users with information regarding planning, design, maintenance and operations. The inclusion of specific service processes will assist park managers, contractors, and concessioners to make thoughtful design decisions that meet the needs of their campground, while complying with overall National Park Service requirements. The guidelines are intended for the National Park Service; however, other state and federal land management agencies may also find it useful and relevant.

National Park Service facility improvements strive to find balance in resource protection and visitor enjoyment. These two principles can often conflict; however, with proper planning and consideration, a balanced approach can be developed—one that allows the National Park Service to maintain relevancy with its visitors by modernizing and adapting while minimizing or mitigating impacts to resources.

Campgrounds within the National Park Service are diverse and reach from coast to coast in a number of different climates and contexts. They offer visitors many unique ways to stay overnight within the national park system. Just as each campground is unique, so is the approach to design and maintenance. The information within this document is intended to serve as a guide with the understanding that no one size fits all and each site will have its own unique requirements. As a government agency, the National Park Service is mandated to follow federal legal requirements. Legal requirements are identified as such throughout the guide.
This guide is intended to reduce research requirements for common campground design elements and provide guidance that is pertinent to the National Park Service by compiling relevant and current information in one location (figure I-1). The guide includes considerations for current and future visitor needs and expectations.

It also promotes inclusion of a diversity of user groups and recreation opportunities through universal design principles and goals. The goal of each park is that every user regardless of their ability and background is welcomed and included in a modern National Park Service campground.

Figure I-1 See the **Find a Campground** site to see a diverse range of campgrounds within the National Park Service.
A Second Century Campground

A second century campground comprises the following:

- Is an inclusive campground that
 » Provides space for all user types, including those with disabilities and those from underserved communities and a variety of cultures.
 » Uses social science data to make informed decisions and considers users and their motivations for use. The built environment is then addressed to reflect visitor preferences as appropriate (such as larger campsites, utilities, or glamping).
 » Provides a wide range of campsite types for different user groups including, where appropriate, modern amenities and larger sites for recreational vehicles as well as continuing to offer traditional tent sites.
 » Separates noncompatible user groups (for instance generator loops are isolated away from tent loops).

- Is a campground that addresses critical systems deferred maintenance (DM)
 » where present, water, wastewater, and electricity are prioritized deferred maintenance since these are critical campground components, and
 » roadways and campground spurs are second tier priorities for deferred maintenance.

- Provides an array of reservation windows for different types of visitors.

- Has an adaptive design that considers emerging technologies and provides space for those improvements in the future. (For instance, providing electric charging opportunities at individual campsites may not be needed now but may be desired in the future.)

- Considers return on investment
 » by using the Market Analysis Tools (under development) to determine the most viable and financially sustainable solution for campground improvements, and
 » through leveraging opportunities (such as Directors Order 35B–Cost Recovery for national park Service Provided Utilities or campsite amenity fees) to offset construction and/or operations and maintenance costs.
CONTENTS

01 NATIONAL PARK SERVICE CAMPGROUND HISTORY

Introduction ... ii
Using the Guide .. ii
Document Objective ... ii
A Second Century Campground iv

Pre-1930s: Early Campgrounds .. 2
1930s: Rustic Campgrounds .. 4
1950s–1960s: Mission 66 and Campgrounds 7
Conclusion ... 9
Brief Timeline .. 11

02 SCOPING COMPLIANCE AND DESIGN

Project Scoping .. 15
Investment and Management Tools 15
Concessions .. 16
Understanding the Visitor ... 16
Accessibility .. 17
Inclusivity ... 18
Understanding the Site ... 19
Site Analysis ... 21

Compliance Considerations ... 22
National Environmental Policy Act 22
National Historic Preservation Act and Section 106 23
Tribal Consultation Policy ... 23
Threatened and Endangered Species Act 23
Wetlands and Floodplains ... 24

Develop Design Considerations .. 24
Permitting ... 25

Design Process .. 26
Site Development .. 26
Site Preparation ... 27
CAMPGROUND DESIGN GUIDELINES

Arriving at the Campground
Vehicular Arrival
Alternate Arrival Considerations
Bus and Ride Share Drop-Off
Bicycle Facilities

Signage
Regulatory Signs
Pavement Markings
Other Signs

Emergency Management or Warning Signs

Motorist Guidance and Pedestrian Wayfinding
Motorist Guidance
Pedestrian Wayfinding
Campsite Loops

Informational Signs
Check-in Procedure and General Campground Rules
Trailhead Examples
Recycling Signs

Campground Access:
Roads, Routes, and Paths
Roadways and Paths
Collector (Primary Campground) Roadways
Local (Secondary Campground) Roadways
Adapting Existing Narrow Roadways
Roadway Closure Gates
Vehicle Barriers

Campground Parking
Connector Routes (Paths)
Accessibility
Hiking and Horse Trails
Social Trails

Campground Layout
National Park Service Campground Design Guidelines

<table>
<thead>
<tr>
<th>Introduction and Table of Contents</th>
</tr>
</thead>
</table>

Layout Design Considerations..............................61

- Vegetation ..61
- Roads and Paths...62
- Topography ..63
- Viewsheds ...63
- Soundscapes ..63
- Campsites ..64

Campsite Distribution in a Campground66

Campsite Layouts..67

Campsite Spur Types...68

- Vehicle and Tent..70
- Large RV and Trailers with Slide Outs............................70
- Host Sites ...72
- Walk-in Campsites for Car Campers72
- Bicycle/Backpacker Sites ...73
- Equestrian Campsites ...74
- Recreational Boating Campgrounds75
- Raised Platform Sites ...76
- Group Campsites ...76
- Cabins, Fixed Walled Tents, Glamping, and Concession Lodging....77
- Backcountry Sites and Dispersed Camping78
- Special Use Sites ..78

Campground Services..79

- Facility Distances to Campsite79
- Determining Facility Capacities79
- Estimating Water and Wastewater Capacity81

Water..81

- Water System Design Process ...82
- Water Hydrants ..84
- RV Water Hookup ..86

Wastewater ...87

- Wastewater System Design Process87
- RV Wastewater Hookup ..88

Comfort Stations...89

- Ratios and Distances ...89
- Materials ...90
- Sustainability ...93
- Flush Toilets ...94
- Mission 66 Comfort Stations ..94
As Albert Good wrote of organized camping, it “is either very old or relatively very new, depending on the perspective in which its background is seen” (Good 1938). It was, in fact, a camping trip that inspired a deeper look at the potential of the national park concept. In May 1903, President Theodore Roosevelt camped in Yosemite with the legendary John Muir. Following that trip, President Roosevelt set aside 18 National Monuments, 55 bird sanctuaries and game preserves, and added 148 million acres to the National Forest. Campground design, as guided by the National Park Service (NPS) throughout the twentieth century, evolved from a primarily rural and simplistic travel necessity to a concept and set of practices culminating in a designed typology within park landscapes. This evolution was multi-faceted with the National Park Service, incorporating design theory and building on a set of practical guidelines and applications for campground design. This body of knowledge responded to rapid changes in transportation technology—from train, to automobile, to camper trailer—that substantially increased and diversified park visitation while restraining and refining campground infrastructure to not only protect key park resources but also enhance visitor experience. Campground design, as such and throughout its history, follows the dual mission of the National Park Service. The importance of campgrounds within national parks cannot be understated as these are the places that primarily provide visitors an unparalleled opportunity to experience park environments. As we launch into the second century of NPS development, the relevancy of our nations campgrounds remains significant. In fact, in a world where more Americans are looking for ways to disconnect with their everyday lives and reconnect with the outdoors, these campgrounds are just as relevant today as they were to early twentieth-century campers.
Pre-1930s: Early Campgrounds

In the early years of the agency, national parks had few campgrounds as the earliest travelers primarily used train travel constructed in conjunction with national park development to reach their destinations. As use of the automobile developed following World War I, campground construction followed that of similar roadside camps across the country, increasing in space and frequency with the development of roads.

These campgrounds had minimal site planning, seeking a location with relatively level topography, access to water, and proximity to roadways. The form of earliest campgrounds, if constructed at all, could be likened to a tadpole and included a single gravel road (the “tail”) terminating in a loop (the “head”). The road was 12 – 18 feet wide, requiring vehicles to pull-over to let others pass. Campsites were informal, undeveloped, and often undelineated. Drivers could parallel park beside the road or pull off further into the camp area. Campers placed tent shelters along either side of the camp road, in the area circumscribed by the loop road, or radiating out from the loop road. Pit toilets were often located within the center of the loop and or near the road (Dolan 2020).

Generally, no other services were provided. The consequences of the lack of early campground design included over-use, unsanitary conditions, impacts to soils, denuded vegetation, and tree harvesting (figures 1.1 and 1.2) (Dolan 2020). To directly respond to these issues, the National Park Service began to develop overall guidance and solutions to site problems. Two key concepts arose to guide a cohesive style of planning for campgrounds and early park infrastructure: the landscape should be preserved (minimize damage to the vegetation and site) and construction should harmonize with nature (blend into the landscape and preserve important viewsheds) (McClelland 1998). These tenants grew from the English garden tradition of the picturesque and could be seen in practice through the work of Downing, Olmsted, and Eliot, among others.

Figure 1.1 Camping near monument – Wakefield, Virginia. Circa 1924. George Washington Birthplace National Monument. NPS Museum Number Catalog: HFCA 1174. Photo Credit: Ezra B. Thompson. Note campsite does not have delineation, and camping under young trees would negatively impact trees through soil compaction.
The appointments of the first landscape engineers were critical in campground development. In 1914, the Secretary of the Interior appointed Mark Daniels as superintendent of Yosemite National Park and landscape engineer to parks. Daniels created a three-tiered development approach for accommodation, presented at the 1915 National Park Conference in San Francisco. Daniels' recommendations included permanent camps with access to food from dining halls and tent camping, where visitors could prepare their own meals. He also devised key components of the park village concept that included roads, lodges, campgrounds, dining halls, camp stores, gas stations, and other associated infrastructure setting the groundwork for a more comprehensive look at park development that would guide NPS standards in the coming decades (McClelland 1998). In response to increased automobile travel during the post war years, Stephen Mather also envisioned a system of highways connecting larger western national parks with free automobile camps as funding allowed, again with basic services such as water, cooking areas, and basic toilet facilities (McClelland 1998). Mather’s forethought for park road connectivity and the importance of accommodation for all levels of park visitor illustrates the importance of the campground as an early component in park design.

Following Daniels, Charles Punchard was appointed as the first landscape engineer for the National Park Service. Punchard’s time was short, running from just 1918 until his death in 1920. However, he was effective in creating a vision to move the National Park Service forward in design and planning, spending a great deal of time on campground design. Building on the ideas of Daniels, Punchard worked on “developmental schemes” for overall park development (McClelland 1998). This work included placement and clustering of buildings, support for and review of concessioner’s plans and designs, and the notation of critical elements and key scenic qualities that should be preserved in park landscapes. Key elements included natural topography and drainage, important trees, and other natural features such as rock outcroppings (McClelland 1998).

Campground development followed as part of a larger comprehensive approach to park design, with Punchard focused on developing permanent campgrounds and rehabilitating existing camping areas. By 1919, he created the basic standards for NPS campgrounds to be carried forward: access to a drinking water supply, sanitary toilet facilities, screening from park roads, and areas for roadways, parking, and living space. Living spaces included an established cooking area to reduce fire hazards, tables, and seating. Further, Punchard encouraged the concept of a campground community building containing bathing and laundry facilities and, for larger campground operations, camp stores and even post offices. The community building would not only contain basic services but would become the social, cultural, and educational hub of the campground for ranger naturalist programs and other shared activities (McClelland 1998). Campground development continued into the 1920s under the guidance of landscape architects Daniel Hull and Thomas Vint (figure 1.3). During this time, housekeeping cabins and camps were introduced, becoming popular with auto-tourists and concessioners like Fred Harvey.

Figure 1.2 1910s. There were no official NPS campgrounds in the 1910s, since between 1916 and 1920, there were no congressional appropriations for park infrastructure. With no formalized camping areas, visitors camped in flat areas. Serious vegetation damage and water quality issues resulted from unformalized camping.
1930s: Rustic Campgrounds

Beginning in 1933 with Depression-Era relief funding and work programs, the National Park Service had the means to implement master plans begun in the late 1920s. New Deal programs allowed building and development within parks to take place at an unprecedented speed. Park construction and planning work received funding primarily through two major programs: federal projects funded by emergency appropriations administered through the Public Works Administration (PWA), and Emergency Conservation Work (ECW) carried out by the Civilian Conservation Corps (CCC) (McClelland 1998). PWA work was carried out by skilled labor provided by private contractors according to NPS standards. This contrasted with Emergency Conservation Work, which was an interagency effort between the Departments of Labor, Army, Interior, and Agriculture administered by an interagency advisory board and officially named the Civilian Conservation Corps in 1937 (McClelland 1998, p. 328).

Staffed with professional designers, the office created guidance for the director and superintendents for park design, development, and management, setting in motion an era of park development and master planning, style, and a landscape preservation ethic for the decades that followed.

To keep up with design demand, Vint increased his staff with an additional 24 designers by 1934 and relocated his office operations to Washington DC under a new title of Chief Architect. Charles Peterson managed the Eastern Division out of Yorktown with William Carnes leading the Western Division from San Francisco (McClelland 1998). This set in motion design for NPS campgrounds, both tent and cabin layouts, across parks in the west and east, with specific design work implemented with regional influences.

Park master plans, as envisioned and executed by Thomas Vint and his team, included the location of campgrounds, their layout, and relationship to park roads, paths, and developed areas. Structures prescribed by master plans were created in the rustic style of architecture and the naturalistic style of landscape architecture, the official design idioms of the agency adopted by the late 1920s. Thousands of campgrounds were built according to this planning and design philosophy. Elements of rustic design
focused on the use of native materials (stone, timber, and native plants), rugged proportions, and naturalistic, informal siting. Key designers of influence included Olmsted, Robinson, Richardson, Hubbard, and Waugh, who taught a young Conrad Wirth (future NPS director) in landscape design at Massachusetts Agricultural College, now the University of Massachusetts, Amherst.

Campground siting was determined using the familiar criteria but also with additional concerns of scenic preservation (not having an impact on the larger park scenery) and lacking visibility from scenic roads. To provide screening, campgrounds were typically located in forested or vegetated areas. The “Meinecke System” created by Dr. E. P. Meinecke, a plant pathologist, was applied as the design template for delineating access, preventing soil compaction, and avoiding loss of vegetation after its introduction by the United States Department of Agriculture (USDA) Forest Service in 1932. Meinecke’s guidance was in direct response to earlier campground siting and mistakes, centered on disorganized placement of automobiles, tents, and walking paths. Meinecke believed the greatest damage done to natural resources was from automobiles and focused his efforts to create campgrounds and campsites that would protect natural features while creating an outdoor home for visitors (McClelland 1998). Meinecke’s guidance included instructions for selecting campground sites with good soils that could support tree growth and avoid compaction, ideally with boulders and other natural outcroppings. Length of season was also considered along with the type of natural vegetation that would create a more useful and desirable camping experience. Meinecke assumed that most campers did not know how to take care of the natural environment around them so he believed that careful planning and a minimum number of signs but with barriers and other infrastructure would guide behavior on where to be and where not to go. Part of this infrastructure included the design of individual sites that were similar in size, with the same level of advantages and features. New roads could be extended out from this plan with new campsites added as needed.

Following Mienecke’s guidance, the actual implementation of the typical 1930s campground (figure 1.4) resembled a compound leaf:

“a two-way gravel road with branches that led to one-way gravel loops. The two-way road, the stem of the compound leaf, was 16–18 feet wide. Each one-way loop, the individual leaflets, was 10–12 feet wide. A secondary level of organization was then applied: a branching pattern of parking spurs, angled in the direction of travel, emanating from the two-way road and one-way loops. Each spur, approximately 10 feet wide and 12–16 feet long, was delineated by rock barriers, or whole logs. Rocks were bedded in the ground in the natural orientation of their strata” (Dolan 2020).

Logs were laid end to end, with the line of logs sometimes punctuated by boulders or the logs seated on short cross logs, elevating them slightly off the ground. Each parking spur signified the location...
of a campsite. Campsites were located near the parking spur, slightly further from the road, where an approximately 12 x 12 foot relatively level, open area would contain a rustic log picnic table, a stone fire pit, and a space for pitching a tent. One 1930s campground commonly offered 100 to 250 campsites. Each campsite was nestled within the overstory canopy of larger trees and buffered by understory and groundcover vegetation, providing privacy between sites. Vegetation was conserved during the lay-out and construction of the campground and supplemented by plantings of native groundcovers, shrubs, and trees. A system of paths delineated by rock edging threaded the campsites together and led to shared services, including restroom structures with flush toilets (in convenient but discrete locations), a community campfire circle or amphitheater, water spigots, and trash collection areas. Larger campgrounds were planned with additional shared services, such as community buildings for evening programs, community kitchens or cook shelters, and a zoned picnic area with clustered tables and picnic shelters” (Dolan 2020).

Architects like Herbert Maier and Cecil Doty helped define the NPS approach to rustic structure design located in campgrounds and across park villages. Following Meinecke’s sensitive design recommendations for campgrounds set to preserve natural features and overall scenic quality and with an understanding of Vint’s comprehensive approach through the master plan, Maier created a complimentary set of guidance for rustic architecture that defined the 1930s and the work of the Civilian Conservation Corps. Maier recommended that buildings should harmonize with the surrounding environment but be secondary to that landscape. Further, he recommended that buildings should also be in harmony with one another in materials, form, and massing. To make buildings and structures secondary to the environment, Maier recommended the avoidance of straight lines, the use of native stone and log materials, and that those materials should be in scale with the larger landscape. Lower-pitched roofs were recommended along with the use of strong horizontal elements. Colors tended toward natural tans and browns, which blended with the ground and surrounding vegetation. Maier recommended screening buildings with vegetation and encouraged a blur between the natural and the built environments (McClelland 1998). Maier led with examples of successful construction projects, showcasing this work in his own source libraries and with field photographs. He built an architectural approach that led not by standardization of design but rather a flexible, creative approach that valued and understood the intersection of site, setting, building, and cultural influences from a particular park or environment (McClelland 1998).

The Civilian Conservation Corps worked at an astounding rate, building out national, state, and municipal parks, primarily led by the National Park Service during the 1930s. As the Federal Unemployment Relief Act was signed in 1933, the National Park Service was ready to put thousands of unskilled men to work. Like most other organizations at the time, the Civilian Conservation Corps followed state segregation laws separating white workers and black workers (Repansheck 2019). Many CCC camps were segregated in southern states including Shenandoah, the Smokies, Colonial National Historical Park, and many other areas (Repanshek 2019). By mid-May of that year, the National Park Service prepared to open 63 CCC camps to accommodate 12,600 men in NPS units. By the end of that year, 35,000 men were enrolled and working in state and national parks under the supervision of 2,300 professionals. Additional park design help came to the National Park Service through the Works Progress Administration (WPA), created in 1935. CCC workers followed the guidance set forth by designers and scientists like Vint, Meinecke, and Maier, working to protect natural and scenic qualities of parks, while creating much-needed infrastructure. Consequences of the 1930s campground design included the archetypal image of the rustic campground as a unique place evocative of its surroundings. These campgrounds were hugely popular and garnered support from a generation of campers drawn to the national park concept.
These campgrounds were not available to all, however. Campgrounds were typically used less by people of color, and some campgrounds were racially segregated (Dolan 2020).

The issue of racial diversity and representation at National Park Service sites culminated during the 1930s after two racially segregated national parks were opened in southern states (Young 2009). Because the National Park Service was created during the time of Jim Crow laws, each NPS site abided by state segregation laws. To address complaints from the public about the segregation of NPS sites, William J. Trent, Jr., was hired as the adviser for Negro affairs to Interior Secretary Harold L. Ickes (Young 2009). Trent was not particularly invested in the outdoors himself but championed increased African American access to the parks and an end to discrimination in them (Young 2009). Trent’s efforts resulted in the first nonsegregated demonstration area in Shenandoah National Park in 1939 (Young 2009). Desegregation involved removing signs with racial designations and combining all facilities (picnic areas, gas stations, restrooms, etc.) that were previously segregated (PBS 2009b).

The policy was extended to other areas in 1941, and by 1945, Interior Secretary Harold Ickes issued a bulletin mandating desegregation in all National Park Service sites (Mills 2020). All National Park Service sites moved toward full integration over the next five years, though racist policies and cultures continued to dissuade people of color from recreating at NPS sites (PBS 2009b).

As World War II began, staffing and visitation quickly declined in national parks. The Civilian Conservation Corps was officially decommissioned in 1942, and the National Park Service began to consolidate positions into regional offices. With less field time available, designers were less familiar with park sites and specific needs. Because of this, work continued but lacked the craftsmanship and site specificity of the pre-war days (McClelland 1998). Many campgrounds during this time fell into disrepair due to lack of funding, maintenance, and use. “Waterlines corroded, masonry features were storm damaged, trees fell, vegetation re-colonized some areas, campsites eroded, and wood features rotted. When visitation rebounded after the war, these 1930s rustic campgrounds were in a severely deteriorated condition” (Dolan 2020).

1950s–1960s: Mission 66 and Campgrounds

At the end of WWII, NPS Director Drury called for a new program that urged the redevelopment of public works programs as seen during the depression era to address the backlog of projects that had occurred during the war. With this request, he called for the control of visitation that increasingly destroyed natural features in parks. Additionally, Drury asked for the removal of concessioners and to create a solution for continued growth and expansion of campgrounds, especially in environmentally sensitive areas. What followed, named the Mission 66 program and under the direction of Director Conrad Wirth, was far larger than Drury’s initial requests and expanded park infrastructure beyond anything yet built.

Mission 66 was a capital investment campaign providing two billion dollars for infrastructure over 10 years, culminating in the 50th anniversary of the agency in 1966. Designed for the new age of automobile tourism, Mission 66 followed a similar master planned effort (still under leadership of Thomas Vint until 1961) and introduced a new type of park structure, the visitor center. Existing campgrounds were expanded to increase their capacity, others were built new, or some were relocated to areas considered more protective of resources than their 1930s predecessors. Campground alterations or new builds were prescribed by the Mission 66 Prospectus for each park. Find more history in the NPS Mission 66 Era Resources NR Multiple Property Documentation Form
During this period, thousands of new campsites were built and considered a critical component of Mission 66 planning. In 1955, the National Park Service had approximately 12,000 campsites and anticipated a need to more than double that number by 1966 (Carr 2007). Campgrounds prescribed or altered by the Mission 66 program were executed following the tenants of Modernism (in both architecture and landscape architecture) overlaid upon the principals of the Meinecke System. While Modernism shifted some aspects of park design away from that of the New Deal period, other aspects lined up well with standards of practice carried forward by Meinecke, Vint, and architects like Maier. Differences included a shift from the picturesque and hand-crafted to the design of landscapes for human use, with a tie to machine production. Further, Modernism favored a shift from pattern and plan to a focus on design for space and volume (Trieb 1993, pp. 53–55). Aspects of Modernism that were more in line with New Deal campground design concepts included the use of local plant materials for their botanical and ecological qualities and the preference for integration of indoor/outdoor space as already set in motion with the advent of structures like the amphitheater and the concept of a campsite as outdoor home (Trieb 1993, pp 53–55). Further, Mission 66 structures, while constructed differently and with materials tied to mass production, still favored the asymmetrical, horizontality found in rustic architecture and often prioritized sensitive siting in the landscape, taking advantage of topography and natural features to screen and blend with park landscapes.

Conrad Wirth believed that the Mission 66 program, through design efforts, would follow early twentieth-century standards of park resource protection through better direction and control of visitors. Wirth hoped to use park infrastructure, including campground design and placement, to “localize, limit, and channel park use” (Carr 2007, p. 281). The program focused park development in areas already used for development rather than pushing farther into undeveloped areas or wilderness zones. Mission 66 also attempted to remove unwanted or badly deteriorated developments (Carr 2007). Structures, furnishings, circulation systems, and signs attempted to provide utility, durability, and economy as their first priorities, rather than harmony with nature. Efficiencies of scale were found in mass produced, industry standard materials and construction methods, rather than the hand-crafted methods used by Depression-era work forces. The implemented form of the 1950s–60s campground (figure 1.5) resembled a bunch of bananas:

“a set of elongated loop roads (the ‘bananas’) emanating in series from a main access road. All aspects of the layout were scaled up from the 1930s template: the main access road was a two-way, 18–20 feet wide road, usually asphalt-paved, leading to one-way loops, 12–16 feet wide, also often paved, with minimum curve radii of 35 feet, allowing for trailers, trucks, and larger automobiles. The angled parking spur remained: now, spurs were scaled up to 12 feet wide x 25 feet long. Delineation of parking spurs was more often by peeled logs or milled wood bollards, rather than rock.
Campsites were scaled up to 20 x 20 feet, to receive a metal and precast concrete fire grate or barbeque grill, a tubular metal and milled lumber picnic table, and a tent site. A 1950s–60s campground commonly offered 400–600 campsites, in loops typically labelled ‘A’ through ‘F’, or more” (Dolan 2020).

“Trails interlacing individual campsites were still part of the 1950s – 60s campground, often with stone or rock delineation, along with community campfire circles of native rock. Restrooms with flush toilets, shower houses, trash collection areas, water fountains, and dish washing stations followed industry standard approaches in design, using cast-in-place concrete, concrete masonry units, milled lumber, and rectilinear forms. Vegetative screening between campsites was desirable, though less emphasized than during the 1930s. Increased carrying capacity and effective functionality for vehicles and people were greater priorities than seclusion from other campers” (Dolan 2020).

“The consequences of the 1950s –60s campground design included mass visitation and campground use throughout the park system, galvanizing the experience of the annual family camping trip, available to a greater economic diversity of visitors. While racially segregated campgrounds no longer existed in the national parks, in most regions, campgrounds were used less by people of color. During the Mission 66 period, the park system grew by more than one third, and visitation increased more than ten-fold over pre-World War II levels. Campgrounds were more standardized and less unique to each locale, but more predictable and more comfortable” (Dolan 2020).

Conclusion

A common thread of landscape protection and preservation runs through campground design from the early years of the agency to the present day. In the mid-1960s, environmental studies and legislation helped support this thread. The 1963 Leopold Report called for the protection and preservation of park biota and recommended sensitive park design and development to balance the mission of the National Park Service. The Wilderness Act of 1964, with the National Park Service following in 1966 with the development of Wilderness Management Criteria guided limits on park development. The National Historic Preservation Act of 1966 asked the National Park Service to consider effects on any structures and developments located in national parks that may have historical or cultural value. The National Environmental Policy Act of 1969 required parks to take an overall look at the environmental effect with any new projects. Ecologist Fraer Darling and geographer Noel D. Eichhorn published “Man and Nature in the National Parks: Reflections on Policy in 1967.” This paper praised the sensitive design efforts of the 1930s as an optimal time in NPS development where a balance was struck between nature and human use. This ethic influenced the 1982 Federal Highway Act that funded park road construction and rehabilitation projects (McClelland 1998, p. 477).

During the 1970s, master planning efforts also reflected environmental and ecological concerns, showing the constant need within the National Park Service to balance the dual mission of resource protection and preservation with park visitation and visitor experience. However, Mission 66 was the last “consistent, ambitious, systemwide redevelopment” program of the National Park Service.
Service (Carr 2007, p. 340). Because of this, the program’s master plans and structures still guide much of how visitors use, enjoy, and experience park landscapes. New design and construction in the National Park Service now fall into a decentralized system, tied to individual park efforts or in collaboration with outside partnerships. This guide intends to promote a more centralized approach towards campgrounds, while still allowing parks to adapt and tier a campground project to their individual park.

The design of campgrounds evolved over time to respond to changing visitor uses and technologies. The changes helped to shape what visitors now identify as an NPS campground. Critical campground site components, such as a fire ring, picnic table, comfort station, and access to drinking water will remain integrated in a modern campground. As will the identifiable loop layout delineated with native vegetation and parking spurs; however, accommodations will be made to adjust to more inclusive campgrounds. Campgrounds that are accessible to users of varying abilities result in increased opportunities to experience park environments. Campground design, as relevant today as it was throughout the history of the National Park Service, remains rooted in resource protection and visitor enjoyment. As the National Park Service moves into a second century of campground use and design, future development and modernization of campgrounds will maintain the fundamental underpinning components of a traditional campground, while adapting to changing uses, users, and technologies (figures 1.6 and 1.7).

Figure 1.6 Today, campground projects should ensure sites are accessible, consider a diverse range of user groups, and incorporate larger vehicles where feasible.

Figure 1.7 Big Cypress National Preserve, Florida, Midway Campground sized for large RVs.
Brief Timeline

See appendix B for additional details.

1916
Stephen Mather writes “Progress in the Development of the National Parks” in which is set forth his vision for the national parks comprehensively and as a system. To this accessibility was key—by rail or roadway.

1916
Stephen Mather envisions a National Park-to-Park highway Association connecting western parks as visitation increases dramatically. Free Automobile camps open in each park with services such as water, cooking grates, and toilet facilities. These are created in cleared areas with access to nearby supplies and fuel (McClelland 1998).

1918
Secretary of the Interior Franklin Lane creates a statement of policy for the National Park Service. In this he creates three fundamental principles supporting the 1916 Organic Act. From this, focus on accommodations should serve various classes of visitors from low-priced camps to high-end hotels. This included, as funds allowed, the National Park Service would create and maintain a system of free campsites. These would be in cleared areas with water and sanitary service (McClelland 1998, p 135).

Mid-1920s
Housekeeping camps are introduced as a concept. This type of camp helps standardize cabin and other building design to be used throughout the new deal era.

1933
The Civilian Conservation Corps is formed as the Emergency Conservation Work agency.

1934
E. P. Meineke writes Camp Planning and Camp Reconstruction.
1934
The National Park Service produces publications on park design: Portfolio of Comfort Stations and Privies; Portfolio of Park Structures—Dorothy Waugh completed these. These two volumes addressed many small structures located in campgrounds.

1935
Albert Good edits “Park Structures and Facilities” for the National Park Service. It is a bound book of successful design work completed by the Civilian Conservation Corps for both state and national parks (with heavy focus on state parks).

1939

1939
Shenandoah National Park selected as the first desegregated site within the National Park Service (Young 2009).

1945
Interior Secretary Harold Ickes issued a bulletin mandating desegregation in all National Park Service sites (Mills 2020).

1954
The Federal Highway Act of 1954 helps parks with the flood of visitors by providing three years of funding for park road development.

1955
Fifty million people visit national parks. The parks are equipped to handle half that number. Park visitors want a different experience at this time, and park visitation areas are too small and in poor condition.

1957
Following Mission 66’s first year, 1,150 projects are set as part of the initial construction program at a total of $75 million with room for 2,300 additional campsites, 930 new, and 1,300 improved campsites (McClelland 1998, p. 469).
1958
Mission 66 program completed
3,200 campsites.

1960
The National Park Service had developed 7,000 individual campsites and rehabbed another 4,000 (Carr 2007, p. 292), with hundreds of campfire circles and amphitheaters created. (Carr 2007, p. 293)

1968
The Architectural Barriers Act (ABA) was established and was one of the earliest measures by Congress to address access to the built environment, requiring facilities designed, built, altered, or leased with federal funds to be accessible according to established standards.

1973
The Rehabilitation Act of 1973, Section 504, was established and requires access to programs and activities that are funded by federal agencies, including provisions for effective communications and equal benefit. Later amendments strengthened requirements for access to electronic and information technology (e.g., websites and electronic interpretive media) in the Federal sector (Section 508).

2000
DO #42: Accessibility came out and provided a comprehensive approach to providing accessibility in programs and services for visitors with disabilities.

2020
The Great American Outdoors Act (H.R.1957) was enacted into law. The single largest investment in public lands in United States history, the landmark legislation established a new National Parks and Public Lands Legacy Restoration Fund to address the maintenance backlog on public lands and to guarantee permanent full funding for the existing Land and Water Conservation Fund.

2021
The National Park Service Second Century Campground Design Guide is released.
02
SCOPING COMPLIANCE AND DESIGN
Project Scoping

Project Scoping and development of a Project Management Information System statement (PMIS) provide the overarching direction for project development in the National Park Service. Within the next few sections, the user can find considerations that are most often needed at the front end of a project that may help in the early stages of project scoping and program development. The information is not intended to replace a National Park Service or park specific process but to point users to locations for more information.

The topics in this section include:
- Using investment and management tools
- Understanding the visitor
- Understanding the site
- Compliance considerations
- Developing design considerations
- Design Process

Investment and Management Tools

To better prepare for the future of National Park Service campgrounds, the service commissioned a study in October 2019 to investigate the design, business practices, and required analysis that will support a campground investment strategy. Market analysis trends reports were completed and are available to the public, partners, and NPS staff through the National Park System Advisory Board. The goals of the study are for the park service to develop tools to make consistent decisions about when campground infrastructure investment is warranted by the National Park Service and what operating model a campground should use.

The prospectus financial model was used to guide the development of these tools. The typical prospectus project includes the creation of an Excel-based financial model that allows park managers to evaluate various investment and revenue options for a new concession contract. Using that basic framework, the consultants hired under the study will develop a financial model that parks and regions can use to consider investment strategies for major campground investment and potential revenue resulting from those investments. These models will also allow park managers to consider whether to develop concession contracts to have a third-party operator manage campgrounds that are not already concessioner run or if it is better to manage a specific campground with park service staff. The intention is not to convert all campgrounds to concessions but rather to ensure consistent decision-making tools are used across the park service. These modeling tools will be available for parks to use as part of their overall campground investment strategy in fiscal year 2021. Once available, this guide will be updated to include links to the investment and management tools.
Concessions

The design guide provides information and parameters on typical campground layouts and services. In many cases, these facilities will be provided by the National Park Service. However, park managers can and should also use investment and management tools outlined above to determine when it is appropriate for a campground to be concessioner operated. Concessioners can install personal property improvements during a contract using ‘personal property structures’ such as camper cabins and prefabricated showers. These types of improvements are removed at the end of the contract term without the park generating leaseholder surrender interest (LSI) or deferred maintenance (DM).

Understanding the Visitor

There are a variety of reasons visitors stay at National Park Service campgrounds. NPS surveys commonly group campgrounds more broadly with facilities (e.g., comfort stations, visitor centers, etc.). This can limit the clarity associated with motivations, evaluations, and other survey results. Additionally, the need for results from a specific campground may also not be available with park-wide visitor surveys. An inclusive NPS campground must consider the needs of not only the current visitor, but the future visitor and visitors that may not be currently using NPS campgrounds. By better understanding current and future visitors, the National Park Service can create spaces to provide a range of camping opportunities and facilities that align with visitor needs and expectations (figure 2.1).

Historical data should be examined to understand how campgrounds are currently used. This should include information such as the current type and number of sites, how often those sites are filled, and the average length of stay among visitors. Some of this data can be found at the National Park Service Visitor Statistics. Some parks may also have data collected from visitor use and experience surveys specific to certain campgrounds or overnight visits. Assistance to develop survey data can be found at NPS Environmental Quality Division. Data regarding visitors or potential visitors may be collected outside the National Park Service and can offer insights to camping use and experience in the surrounding area. Two recent market analysis trends reports contracted by the National Park Service in fall 2019 indicate the top self-reported reasons visitors stay at National Park Service campgrounds as the following:

1. **Diverse Camping Opportunities**
 - (RV, tent, cabins)

2. **Location of Campgrounds**
 - a. Geographically close to where people live
 - b. Close to recreational opportunities and attractions (hiking and backpacking are at the top of the list)
c. Located in the iconic places and natural resources of the National Park Service

3. Atmosphere of the campground and services provided.
 a. Family-friendly campgrounds
 b. Place to relax and get away

4. Desire to explore new destinations

Copies of the full reports can be found through the National Park System Advisory Board.

If a park does not have any existing information or the available information is dated or limited, the park should consider collecting data concerning visitor use, experience, and preferences. Parks should consider populations of interest, including current visitors, as well as people or visitors who are currently not using NPS campgrounds as an overnight opportunity. To obtain information from the target populations, a variety of social science methods can be employed ranging from on-site visitor intercept surveys to online household surveys. The best methods to obtain information will depend on the target population. While few parks are equipped with staffing and expertise to employ their own visitor surveys, the Social Science Branch of the Environmental Quality Division of the National Park Service can assist. Additionally, the Social Science Branch is responsible for reviewing all NPS sponsored social science surveys, which must receive Office of Management and Budget approval as per the Paperwork Reduction Act. More information about this process can be found here: Social Science Information Collection.

Parks should consider a range of visitor questions, such as:

- What kind of camping is desired (RV, car, tent, bike, walk-in)?
- How long are visitors expected to stay?
- What services do visitors want (group sites, cabins, electric sites, etc.)?
- What is the socio-economic status of visitors?
- What are the demographics of visitors and how might this impact their campsite needs?
- What are the appropriate visitor price points?
- How can the campground be more welcoming and inclusive for diverse visitors?
- How many sites should be reservable and how many are first come, first served? Studies have shown most visitors have a preference for reservable sites.
- What are current uses and how do they differ from desired uses?

Understanding the visitor enables the National Park Service to create more inclusive campgrounds by planning facilities, services, programs, and activities around a diverse group of visitors.

Accessibility

One in four people in the United States lives with a disability (CDC 2019). National Park Service visitors include people with disabilities, and the National Park Service is committed to ensuring that people with disabilities have equal opportunity to benefit from NPS facilities, programs, services, and activities. As a federal entity, the National Park Service is required by law to comply with the Architectural Barriers Act of 1968 (ABA/ABAAS) and the Rehabilitation Act of 1973. The accessibility of commercial services within national parks is also covered under Title III of the Americans with Disabilities Act of 1990. The National Park Service sets forth its internal policies on accessibility in Director’s Order 42: Accessibility for Visitors with Disabilities in National Park Service Programs and Services.

Learn more about standards of these laws on the US Access Board website. Legal requirements outlined in the US Access Board Standards are a requirement for all new and rehabilitated construction. Within the standards are scoping requirements for the minimum
number of accessible elements (e.g., campsites) and technical requirements for ground surfaces, reach ranges, clear knee and toe spaces, RV and other vehicle parking, etc. These standards are minimums. As much as possible, the National Park Service should strive to exceed the standards and provide more than the minimum legal requirements. This will allow more flexibility for all park service visitors and create a more welcoming environment for everyone. Flexibility also reduces the burden of operations when accessible camp services exceed the minimum required by law. (For instance, a campground with the minimum of one accessible site must manage access of this site for visitors with disabilities.)

National Park Service policy and Directors Order 42 (DO #42) require the application of Universal design principles and goals. Universal design is the design of products and environments to be usable by all people, to the greatest extent possible, without the need for adaptation or specialized design. Universal design exceeds the standards of ABA and strives to include all people in the same experience. There is no legal requirement to meet Universal design principles rather than the ABA Standards. However, making facilities, programs, services, and activities more user-friendly to all people no matter their abilities or disabilities is a worthwhile endeavor.

Throughout this guide, references are provided to the most common codes for each service or facility, but the guide is not intended to duplicate the standards in their entirety. Designers should always reference the full ABAAS code to understand all requirements. In some locations, additional resources are given to accompany the code (such as American National Standards Institute, ANSI, or USDA Forest Service) as a best practice. The National Park Service will eventually be adopting the ANSI standards; however, the timeframe of this transition is unknown. Thus, ABA standards are the final legal requirement. Prior to the initiation of construction or rehabilitation of campground facilities or interpretation features, all project plans should be reviewed by accessibility experts. Parks without accessibility expertise should contact regional accessibility coordinators. This will ensure compliance is met and provide the opportunity for recommendations for universal design. The most cost-effective time to correct deficiencies in accessible design is prior to construction. The transition from design to construction is another critical step for maintaining accessibility in physical spaces. Accessibility expertise should be involved during construction inspections before finalization of projects to ensure required measurements, grades, and other standards are met with the final products.

Inclusivity

Ensure that campground design fosters an inclusive environment where people of all backgrounds, race, ethnicity, gender, and sexual orientation feel welcome and safe. The mission of the National Park Service Office of Relevancy, Diversity, and Inclusion (RDI) is to champion for an organizational culture that is increasingly inclusive and participatory, which values the diverse ideas, experiences and background of every individual and empowers an innovative, flexible and resilient National Park Service to engage the opportunities and challenges of the future. To learn more, visit the RDI website.

When it comes to racial and ethnic diversity, the makeup of NPS visitation is not keeping pace with the changing United States population. Projections by the Pew Research Center show that by 2050 the population numbers of non-Hispanic whites will drop to half or slightly less than half of the total population. In contrast, the Hispanic population will rise to 29 percent, the African American population will increase to 13 percent, and the Asian American population will increase to 9 percent. Campgrounds should be designed with demographics in mind. Plan for visitation to match the local demographics or the demographics of the United States, whichever is more diverse. Diversity, relevancy, and inclusion must link through all NPS operations, including design and rehabilitation of campgrounds.

While it is best to avoid generalizing recreation preferences of people from varied backgrounds,
National Park Service Campground Design Guidelines | Chapter 02: Scoping, Compliance, and Design

research can help inform decision makers on how to best serve diverse populations. Research shows that Asian Americans value having opportunities to recreate with family, especially children and elders (USDA 2008). Latinos similarly experience frustration with an inability to recreate with large extended families in spaces designed for small nuclear groups (USDA 2008). Because of this, Latinos show a preference for large areas like gazebos or big picnic areas in recreation areas (USDA 2008). Clean bathrooms and well-maintained facilities are rated as very important to both Latinos and African Americans (USDA 2008). African Americans also show higher comfort in outdoor environments when there is an ease of leaving for help in case of emergency (USDA 2008).

Discriminatory stereotypes and remarks of racism have deterred all three of these user groups from returning to outdoor spaces (USDA 2008). Concerns around safety and protection were similarly noted as important to all three user groups (USDA 2008). Plan for diversity and inclusivity when designing new or rehabilitated campgrounds. Start by incorporating people of different backgrounds, perspectives, thoughts, and beliefs on your planning team. Understand the demographics and motivations of those who do and do not visit your park. See “Visitor Motivations” for more information. Partner with organizations with diverse representation to understand how to build more welcoming spaces and more inclusive programming in National Park Service campgrounds. Ensure that campgrounds feel safe and welcoming to people of all backgrounds. Plan campground design and rehabilitation with flexible spaces that can accommodate a wide range of visitor preferences and abilities. (For example, design a cluster of individual campsites that can be combined for use by larger extended families.) Seek out and include a wide range of services and technologies to attract different users. Specific recommendations on how to ensure an inclusive campground design are provided throughout the design guide (including Signage, Host Sites, Group Campsites, Comfort Stations, Lighting, Amphitheater, Picnic Table at Campsite, Picnic Areas (Stand Alone), and Showers.)

Understanding the Site

Campgrounds with historic significance and integrity may be eligible for listing in the National Register of Historic Places as sites or districts. As such, they are identified by the National Park Service as cultural landscapes, one type of cultural resource. Campgrounds may also contain other kinds of cultural resources, namely archeological resources, historic structures, and ethnographic resources. These must be identified before or during the campground planning process. Existing information can be found in baseline documentation.

Baseline documentation for cultural resources is evaluative information used to guide stewardship and avoid, minimize, or mitigate the potential impacts of undertakings, such as campground rehabilitation. Cultural resources baseline documentation is stored in the Cultural Resources Inventory Database (CRIS). This database encompasses cultural landscapes, archeological resources, historic structures, and ethnographic resources. It also consolidates the former Cultural Landscapes Inventory (CLI), the List of Classified Structures (LCS), the Archeological Sites Information Management System (ASMIS), and the Ethnographic Resources Inventory (ERI). In addition to inventories, other baseline documentation exists in the form of resource studies and treatment plans. These types of documents pertinent to
Campgrounds include the Cultural Landscape Report, an Archeological Overview and Assessment, a Historic Structures Report, and an Ethnographic Overview and Assessment. Resource studies inform campground project planning and design, and treatment plans more specifically provide design recommendations.

The priorities of the NPS mission are guided by the NPS Management Policies 2006. Specifically, the policies state that the National Park Service will protect, preserve, and foster appreciation of cultural resources through appropriate programs of research, planning, and stewardship (NPS Management Policies 2006, p. 59). More specific NPS guidance is provided in Director’s Order 28: Management of Cultural Resources. In addition to this section, see “Preconstruction – Compliance Considerations” in this guide.

Research should inform planning and compliance with legal requirements associated with the National Historic Preservation Act (1966) and the National Environmental Policy Act (1970). Effective planning will provide an understanding of the significance of the park’s cultural resources. Plan for adequate cultural resource identification, evaluation, and associated consultation with partners and cooperating agencies prior to any final treatment development or implementation.

- Cultural Resources, Partnerships, and Science Directorate
- Federal Historic Preservation Laws, Regulations, and Orders
- Archeology Program
- Historic Structure Report (HSR)
- Cultural Landscape Report

Currently, the NPS Cultural Resources, Partnership, and Science Directorate and the Park Planning Facilities and Land Directorate are collaborating with the National Conference of State Historic Preservation Officers to improve efficiencies in resource identification and evaluations with the intent to improve and expedite baseline documentation necessary for responsible planning and treatment of campgrounds and comfort stations. As that work continues, procedures and processes for implementation of the Second Century Campground Guidelines will be updated.
Site Analysis

O&M - Site Analysis

- All designs (figure 2.2) must adhere to the Organic Act (54 U.S.C. §100101(a)) specifically:

To conserve the scenery, natural and historic objects, and wild life in the System units and to provide for the enjoyment of the scenery, natural and historic objects, and wild life in such manner and by such means as will leave them unimpaired for the enjoyment of future generations.

- Facilities will be harmonious with park resources, compatible with natural processes, esthetically pleasing, functional, energy- and water-efficient, cost-effective, universally designed, and as welcoming as possible to all segments of the population. NPS Management Policies, 2006.

- Designs must reflect the context of the park unit and local environment (contextual design). Designs must respond to the capabilities of the park unit staff and the local market for support services.

Site analysis is a preliminary step in the design process, typically performed during predesign (or preliminary design), to analyze potential development sites as it relates to the program, budget and schedule of the project. It evaluates an existing site or potentially new site by identifying specific site issues, such as physical, environmental, cultural, and legal attributes. This informs different opportunities and constraints for alternative uses of the site. It provides direction for design by developing an understanding of the site and program uses. It is used as the basis of design for site selection and/or program development and reinforces goals for a cost-effective, environmentally sensitive, and maintainable and sustainable approach to project development. Consider using park GIS and survey data to identify areas of vulnerability. (This is especially important for coastal park units.) Site analysis can be prepared as a narrative or in graphic format but should include many of the following:

- archeological sites
- site and building history
- topographic and physical feature analysis
- existing condition assessment; i.e., hazmat investigation
- accessibility features and deficiencies
- access and circulation, including traffic and parking studies
- native and invasive vegetation studies
- existing water bodies, floodplains, wetlands, drainage ways, hydrologic studies, watershed modeling studies
- views and vistas
- naturally dark night skies
- soundscape
- environmental and climate change studies and reports
- geotechnical/soils
- on-site and off-site utility studies
- project requirements
- review of other park projects and adjacent development

Refer to the National Park Service, Denver Service Center Workflows, DBB 1.0 Predesign (PD)

1. Prepare Contextual Analysis
2. Prepare Project Program (site analysis included)
3. Prepare Integrated Design Narrative

More information can be found here: Denver Service Center Workflows
Compliance Considerations

The National Park Service is required to follow all law, regulation, and policy. This section includes the most critical but may not be exhaustive.

National Environmental Policy Act

Information on the National Environmental Policy Act (NEPA) included here is derived from the 2015 NPS NEPA Handbook and Supplements. Note that the supplements are a key part of the handbook. The intention in this section is to ensure awareness of the need for NEPA compliance and provide resources to scope projects. The project lead should consider reaching out to the park or region NEPA Coordinator/Lead early in the planning process to help develop the NEPA strategy for a project. The NEPA process is led by the National Park Service, but consultants may be hired to prepare documentation.

Passed by Congress in 1970, the National Environmental Policy Act established a national policy of encouraging productive and enjoyable harmony between human beings and the environment for present and future generations. To further this policy, the National Environmental Policy Act requires federal agencies like the National Park Service to evaluate the environmental impacts of its actions and to involve the public in the decision-making process. Within the National Park Service, the NEPA process is an essential tool for ensuring informed decisions that conserve park resources and values. Below is a compilation of all DOI/WASO orders and memos issued since 2017 regarding the NEPA process and External Review.

The five-step NEPA process applies to any level of NEPA documentation:

1. project identification
2. scoping
3. develop and analyze alternatives
4. documentation
5. decision

Some parks create their own compliance procedures and checklists that park staff are required to follow whenever a project is proposed or an action identified that has the potential to affect natural or cultural resources.

More information can be found here: NEPA Handbook
National Historic Preservation Act and Section 106

Passed by Congress in 1966, Section 106 of the National Historic Preservation Act (NHPA) requires federal agencies to take into account the effects of their undertakings on historic properties listed in or eligible to be listed in the National Register of Historic Places and afford the Advisory Council on Historic Preservation an opportunity to comment. Section 106 compliance is coordinated by the National Park Service, but consultants may be hired to provide information for the process. To learn more about the National Historic Preservation Act and the regulations and policies that support it, see “NHPA Law, Regulations, Policies.”

Section 106 consultation is required for any federal undertaking that has the potential to affect historic properties. In short, the National Historic Preservation Act is required whenever there is an undertaking 1) on federal lands, 2) using federal funds, and/or 3) requiring a federal permit. For more on undertakings and the 800.3 clause (no potential to cause effects), see “Undertakings.”

Who and how many participants are involved in the Section 106 process depends on the level of effect and complexity of the undertaking and will include the following:

- Park Section 106 Coordinator
- Cultural Resource Management (CRM) Team (an interdisciplinary team of cultural resource management professionals to provide advice at each step in the compliance process and may include staff from inside the park as well as staff from the Region)
- State historic preservation office (SHPO)
- Tribal historic preservation officer (Tribal Consultation)

The Advisory Council on Historic Preservation’s regulations for Section 106 of the National Historic Preservation Act recommends that processes for the National Environmental Protection Act and Section 106 be combined, when possible, to help streamline these compliance processes. For Mission 66 campgrounds NHPA compliance, refer to Mission 66 Campgrounds: Consensus Determination of Eligibility Process Guidelines and the NPS Mission 66 Era Resources NR Multiple Property Documentation Form.

Tribal Consultation Policy

On November 5, 2009, President Barack Obama issued a Presidential Memorandum directing each agency to submit a detailed plan of action describing how the agency will implement the policies and directives of Executive Order 13175, which outlines requirements for consultation and coordination with Indian Tribal Governments. Additional information can be found at the Tribal Consultation Policy website.

Threatened and Endangered Species Act

Section 7 of the Endangered Species Act (ESA) requires federal agencies to consult with the US Fish and Wildlife Service (USFWS) or the National Marine Fisheries Service (NMFS) when taking an action that may affect federally listed or threatened or endangered species or designated critical habitat.

The standard NPS practice is to complete Section 7 consultation before signing a decision document (Section 4.14 of NPS NEPA Handbook). For guidance on completing the steps of the Section 7 process, see:

- USFWS Step by Step Section 7 Guidance
- NOAA NMFS Section 7 Guidance
Wetlands and Floodplains

Executive Orders 12898 (wetlands) and 11988 (floodplains) govern federal agency actions that may affect these resources. The NPS Director’s Order 77-1 (wetlands) and 77-2 (floodplains), and related procedural manuals, provide additional direction. It is highly recommended you contact the NPS Water Resources Division (WRD) Aquatics Branch (https://www.nps.gov/orgs/1439/ASB.htm) whenever wetlands or floodplains may be affected by your project—even if you’re not sure. The Water Resources Division is an excellent source of information, and specialists there will make sure you are on the right path when it comes to protecting wetlands and floodplains.

For detailed guidance:

- NPS Wetlands Procedural Manual NPS 77-1
- NPS Floodplain Procedural Manual NPS 77-2

Wild and Scenic Rivers Program. The national Wild and Scenic Rivers System was created by Congress in 1968 (Public Law 90-542; 16 U.S.C. 1271 et seq.) to preserve certain rivers with outstanding natural, cultural, and recreational values in a free-flowing condition for the enjoyment of present and future generations. The NPS Wild and Scenic Rivers program works to reduce the risks of resource degradation through resource management technical assistance, training, policy guidance, and planning.

Develop Design Considerations

Designers should reference previous park planning efforts such as general management plans, development concept plans, character guidelines, zoning plans, foundation documents, etc. before beginning the design process. When addressing Mission 66 campgrounds, refer to Mission 66 Campgrounds: Treatment Guidelines. This will ensure any new or rehabilitated campgrounds fit within the existing park planning framework (figure 2.3).

When contemplating a change to an existing campground or the creation of a new campground, many details should be considered, including the following:

- Park staff or designers need to consider if existing infrastructure allows for the capacity for expansion or change in services such as utilities, water, and wastewater.
• Early evaluation of infrastructure capacity is recommended to avoid a large financial outlay for design when capacity may be the limiting factor or if an increase in infrastructure capacity is warranted.

• Some projects may need to be phased either due to budget or site considerations. Designs need to reflect this possibility and how it might impact operations, budget, and visitor experience.

• Understanding visitor motivations will help define spatial requirements. (For example, what is the maximum separation between comfort stations in a campground setting.)

• Design should ensure adaptability for changing users, changing environment, and resilience. (For example, running extra conduits during construction to allow the flexibility to add utilities later.)

• Adequate surveys or confirmation of existing surveys should be provided. (e.g., lidar, GIS, drones, aerial photography, potholing for utilities, etc.)

Capacity of existing utilities and infrastructure (safety, water, electric, sanitary, and road design).

• Verify power needs and existing capacity: other entities’ (upgrades, meters, transformers, service, etc.), utility easements and possible associated agreements, etc. Larger electrical service or telecommunications may be required to meet increased need (for instance if electrical hookups are added). If larger service is needed, it may require the servicing utility company to upgrade their facilities, or upgrades of facilities may not be possible to meet additional needs. Upgrades may require additional cost for review and approval of design, permitting requirements, and installation of conduit to upgrade electricity. Refer to National Park Service, Denver Service Center Workflows, Section DBB 1.0 Predesign (PD), 1.5 Permitting.

• Verify capacity of all existing utility services is adequate for all proposed upgrades. Verify size, type, and condition of all existing utility lines and perform any testing (like flow test) to verify minimum required water pressure and flow is available at the proposed point of tie-in for the water system.

• Build with fireproof materials (if possible).

• Fire alarm emergency response (cell, telephone, fiber connection): confirm the system that is required and check that services can provide uninterrupted response.

• Sanitary sewer services: Verify capacity of leach field, sewer plant, and any downstream effect.

• Consultation with either park staff or concessioner that provide maintenance and service. (This is typically a concern when adding new features like comfort stations or utility access for recreation vehicles.)

Permitting

Evaluate potential jurisdictions and agencies that apply to the project. Identify applicable project topics, missing information, and decisions needed to determine applicable permits. Use this information and any information provided by your project to identify required permits. Many permits have a nominal fee, but others can be quite expensive and have long lead times; thus, it is important to know up front what impact they will have on the budget and timeline.

The Denver Service Center (DSC) has a Permitting Assessment Form (PAF) to help frame permitting for park projects. The Excel spreadsheet is useful to document permitting research and decisions.
Design Process

Campground design often includes common sequential components. This will vary from project to project. The following list is a brief overview of common sequential considerations; it is not inclusive of all facilities and furnishings. Aesthetic considerations must also be included as an overlay to guide design.

1. Roadway layout within the campground
 a. Geometry
 b. Grade
 c. Drainage
 d. Basic utility layout and planning
 e. Material volumes (earthwork cut/fill, aggregate, asphalt)
 f. Site clearing (trees/vegetation, topsoil)

2. Determine facilities/amenities to be provided
 a. Comfort stations, shower, administrative buildings, electrical hookups, etc.
 b. Size utility systems related to facility – water, wastewater, electrical, etc.

3. Campsite layout design
 a. Campsite types and layouts, fit to site (including camp hosts, volunteer sites, etc.)
 b. Locate facilities on the site (including trash and recycling locations, comfort stations, etc.)
 c. Paths to facilities

4. Define site furnishings
 a. Picnic tables
 b. Fire ring
 c. Tent pad
 d. Bear box (if applicable)
 e. Directional signs and other signs
 f. Shelters/pavilions/wind barriers
 g. Other miscellaneous as applicable (light hangers, hammock stands, dog bag dispensers, etc.)

5. Barriers, landscaping and irrigation (if applicable)

Site Development

New campground construction or an extensive renovation will likely involve site preparation and earthwork. Having a general understanding of this process will help make the permitting and compliance processes more efficient. Generally, permitting is required when there is substantial surface disturbance (1 acre or more) that could affect stormwater. Compliance review is required because the project will likely impact vegetation, habitat, wildlife, and potential cultural resources.
Site Preparation

Proper site preparation means fewer frustrating setbacks during construction but also avoids running afoul of local and federal rules and NPS guidelines. Site preparation and site development include the following:

- **Soil Survey**: Geotechnical report related to site soil properties
- **Brush Removal or Grubbing**: first the vegetation is cleared and then the surface soil layer is removed.
- **Tree Clearing and Limbing**: Removing trees and limbs is very labor intensive. It requires proper equipment and an experienced contractor.
- **Stump and Embedded Rock Removal**: Stumps and large boulders can create major problems for contractors and can impact layout of program (i.e., location of roads and utilities)
- **Erosion Control**: Control of surface runoff and soil loss. Erosion control is planned in the design phase and implemented by an experienced team.
- **Excavation**: The use of manual tools or heavy equipment to remove material from the surface, usually soil or rock. Digging is the combination of two processes, the first the breaking or cutting of the surface and the second the removal and relocation of the material found there.
- **Trenching**: Trenches are often created to install underground infrastructure or utilities (e.g., water, sewer, and electrical lines), or later to access these installations. Establish clear utility zones so they are easily identifiable by both maintenance staff and campers to protect utilities and ensure fast repairs when damaged.
- **Grading**: To reconfigure the topography of a site or to stabilize slopes.
- **Fill Export/Import**: Land clearing also includes removing excess soil or bringing more material onto the site.

Low-Impact Development

Low-impact development (LID) is a term used to describe a site planning and engineering design approach to manage stormwater runoff that preserves the site’s natural hydrological and biological character. Low-impact development emphasizes conservation and use of on-site natural features to protect water quality. Conventional processes often drastically alter the site and thereby require greater inputs to mimic natural functions like large culverts and detention basins. The comprehensive approach of low-impact development starts from the beginning of the design process through thoughtful site layout, strict controls on land clearing, and appropriate site elements being away from sensitive areas. Campground projects can implement low-impact development in site development by implementing some of the following:

- Minimize impervious surfaces and roads
- Minimize the area of construction and material storage
- Maintain the existing topography and drainage systems to greatest extent possible
- Involve park and region resources early in the design process
- Establish tree and habitat protection zones in design and construction phases
- Conserve existing topsoil
Restoration

Restoration of soil and vegetation impacted by development activities will help stabilize construction sites, minimize impacts to natural and cultural resources, and protect infrastructure investments. As a land management agency, the National Park Service has unique policies that direct projects to incorporate site revegetation and restoration into project costs (NPS 2006 Management Policies, Section 9.1) and specify genetically or site appropriate plant materials be used in all revegetation work (NPS 2006 Management Policies, Section 4.4). Best management practices for addressing site impacts include:

- Remove all road base, gravel, and nonnative soil material in abandoned or decommissioned areas.
- Decompact soils impacted by new and old construction activities.
 - Assure soils, especially those with a clay component, are decompacted or loosened to a depth that will accommodate the root zone of desirable plants.
- Amend soils as necessary. Severely degraded soils may benefit from the incorporation of mulch or compost material. Send soil samples to local laboratory for evaluation.
- Avoid importing topsoil that may be infested with pathogens or nonnative invasive plants.
- Use plant materials that are both native and genetically appropriate to the revegetation area.
- Incorporate erosion control products that are weed free, wildlife appropriate, and free from all synthetic fibers.

The Denver Service Center’s Revegetation Program’s purpose is to assist project managers and park units in successfully delivering projects that comply with the high standards of resource management that are part of the culture and policies of the National Park Service.

The Revegetation Program services include:

- Developing revegetation plans, specifications, and cost estimates.
- Facilitating revegetation project implementation, including invasive plant control, topsoil management, erosion control, native seed collection, seed increase, plant propagation, and reseeding.
- Preparing and overseeing revegetation related contracts.
- Providing biological and ecological technical assistance to project managers and park staff.
- Assisting in the development of genetically and site appropriate plant materials and seed mixes.

Native plants:

- [NatureServe](https://www.natureserve.org)
- [SEINet](https://www.suenet.org)

Revegetation Information:

- [Roadside Revegetation](https://www.fws.gov/cr/roadside.html)
- [CalTrans Erosion Toolbox](https://www.dot.ca.gov/hq/er/tc/caltrans.html)
- [Natural Resources Conservation Service (NRCS) Web Soil Survey](https://websoilsurvey.nrcs.usda.gov/)
- [Xerces Society Pollinator friendly plants and research](https://www.xerces.org/)

Invasive Plants:

- [National Park Service Invasive Plant Management Program](https://www.nps.gov/parkmanagement/invasiveplants.htm)
Building Codes and Best Practices

Building Codes. The International Code Council (ICC) is a nonprofit association that provides a wide range of building safety solutions, including product evaluation, accreditation, certification, codification, and training. It develops model codes and standards used worldwide to construct safe, sustainable, affordable, and resilient structures.

The links listed below will take you to an external site hosted by the International Code Council:

- [International Building Code (IBC)]
- [International Existing Building Code (IEBC)]
- [International Plumbing Code (IPC)]
- [International Mechanical Code (IMC)]
- [International Residential Code (IRC)]
- [International Fuel Gas Code (IFGC)]
- [International Fire Code (IFC)]
- [International Energy Conservation Code (IECC)]

Additional Electrical code is available here:
- [National Electrical Code (NEC)]

Structural Fire:
- [Structural Fire Reference Manual 58]

Sustainability:
- [Sustainability QA Review Checklist]

Universal Design and Accessibility

Accessibility Compliance: Compliance with Section 504 and Section 508 of the Rehabilitation Act are legal requirements for all federal agencies.

Universal Design: The design of products and environments to be usable by all people, to the greatest extent possible, without the need for adaptation or specialized design. National Park Service policy and Directors Order 42 (DO #42) require the application of universal design principles and goals.

Links for Accessibility Standards

- [Principles of Universal Design]
- [Accessibility Standards for Federal Outdoor Developed Areas]
- [Department of Justice online 2010 Standards for Accessible Design]

Other NPS Specific Issues

There may be concerns or policies that the National Park Service or your park follow that can have an impact on the design and construction of your project. For example:

- NPS policy requires all fire alarm devices to be NON-PROPRIETARY; not all manufactures are compatible with this requirement.

Sustainability:

- [Sustainability QA Review Checklist]
Pets in Campgrounds

Campground visitors often bring pets along on the family vacation. Dogs are the most typical. The National Park Service welcomes pets in developed areas and has pet regulations so all parks follow the same rules. Reference NPS regulations on pets. Service animals are NOT considered pets and are allowed under NPS policy (Policy Memorandum 18-02) and regulation issued by the Department of Justice for Americans with Disabilities Act (ADA) title 2 & 3. Navigate to this NPS site to learn more information on Service Animals in National Parks.

To establish expectations, parks should ensure messaging about pets is clear both in campgrounds and other published visitor information (website, newsletter, etc.) Consider providing written pet rules at campground check in.

Typical pet rules (from regulations noted above) include:

- Pets should be crated or restrained on a leash not exceeding six feet in length.
- Pets should not be left unattended.
- Pets are not allowed to frighten wildlife by barking or chasing.
- Pet excrement must be disposed of appropriately.
- Campgrounds managed by concessions may have additional rules.
- In parks where pets are not allowed, provide a service animal relief area with refuse receptacle.
This guide is meant to be a broad resource for modern campground standards. It is intentionally not region or park specific and does not replace individual park character guidelines. This guide is also not intended to create campgrounds that are all the same. To appeal to all park visitors, the National Park Service should continue to offer a full range of recreational opportunities and experiences with facilities that fit into the local character of each park. The type of campsites addressed in this guide range from the walk-in campsite to the large RV campsite with hookups (figure 3.1). Most of these campsites reside in larger campground developments. This guide will not provide any specifications on backcountry sites because they typically do not provide many amenities, if any at all.
Arriving at the Campground

Before arrival. The use and advancement of technology has increased greatly in the past ten years. Many visitors want the ability to plan vacations ahead of time and NPS campgrounds need to adapt and accommodate these changes if possible. Adding campsites to Recreation.gov with detailed site information such as size of parking stall, what equipment will fit, and the general services provided will give visitors the ability to book a campsite that is right for them in advance.

Some visitors and park staff feel there is still a desire to have first-come, first-served sites available for the on-the-whim traveler. However, given current visitation and camping trends, advertising that some sites are available first-come, first-served can set an unrealistic expectation that a site will in fact be available when they arrive. A better approach can be accommodated within Recreation.gov by using shorter booking windows (two weeks or four days in advance) and allowing the public to make same day reservations. It is beneficial for visitors arriving without a reservation to know which sites are available when arriving without having to drive through every campground loop. The reservation systems should be set up to drop reservations if there is a no show after 24 hours of initial reservation so that others can take previously reserved spots. Improving visitor access to real-time information can be accomplished through the recreation.gov application for those sites represented on the system. Other means may include posting signs at the park entrance stations, campground entrances, or other means, to communicate the campground’s current availability in real time. Yellowstone National Park’s live map initiative is a successful example of providing real time data to assist visitors in planning for camping. Park websites should also provide accurate and robust camping information, including photos of each campsite. Providing different options for campsite reservations and site selection will help create a better visitor experience for all types of campers and include those that want reservations and those that want to walk-up opportunities. Include a map to help visitors identify the location of their site within the campground and assess route and curves before committing to their campsite.

Arrival. Arriving at the campground gives a visitor their first impression of what to expect throughout their stay. Well-placed signs that clearly direct visitors where to pay fees, find their campsite, and

Figure 3.1 NPS should offer a full range of recreational opportunities and experiences.
Figure 3.2 Close-up of an example of a Recreation.gov QR code for purchasing a site pass to Whiskeytown National Recreation Area.

Figure 3.3 A Recreation.gov instruction page shows how to buy a pass online.
understand the rules and regulations will provide the necessary information to make sure they have a great stay and minimize management issues for staff. See “Informational Signs” for more information. Accessible sites should be reserved for visitors with disabilities. Often a set cut-off time for the reservation of the sites is needed so that they can be filled by others when not needed for visitors with disabilities. An example of this would be that accessible sites not filled by 4 p.m. the day of can be filled by other visitors for that night. Ideally, accessible sites should be made available for advanced reservations so visitors with a need can plan ahead and reserve a site in advance of arrival.

In smaller campgrounds, or for after-hour arrival in large campgrounds, a fee-kiosk with a bulletin board and iron-ranger (fee deposit box) can provide the correct information for visitors without the need for park staff. Bulletin boards should contain information related to accessibility of the campground, and existing bulletin boards should be retained if they are a contributing feature of a historic design of the campground. The area should be a pull-off located near the campground entrance, before campsites, and should be clearly marked. Typically, envelopes where visitors fill out their information and insert the camping fee are provided to then be dropped into the iron-ranger.

While iron rangers have a long tradition of use in parks, shifting away from the use of iron rangers and towards digital methods of fee collection is superior. Recreation.gov allows for easy cashless fee collection that is preferred by visitors and provides many benefits for parks (figures 3.2 and 3.3). It is recommended that parks embrace Recreation.gov and shift away from cash fee collection. Use of recreation.gov can also be more accessible for persons with disabilities for registration. Recreation.gov can offer staggered reservation services, releasing some sites in advance while reserving some for more spontaneous travelers.

Accessibility. If an iron ranger, or fee deposit box, is used, place it near the bulletin board (figures 3.4 and 3.5). Position the slot where fees are deposited no higher than 48 inches high. Locate a lock gate chamber opening on the back side of the iron ranger 24 inches above the ground, which will allow park staff to collect all fees. For additional information about reach ranges, see ABAAS Chapter 308.

Provide a minimum clear ground space of 30 inches by 48 inches in front of the bulletin board and fee deposit box, with a level ground surface with slopes not exceeding two percent (See Chapter 10 of ABAAS.) As a best practice, provide 30 inches by 52 inches of clear ground space as required by ANSI 305.3.1.

Accessibility must be provided at all arrival facilities. See: Accessibility approach – ABAAS sections 401–406.
Vehicular Arrival

Most visitors arrive at a campground by private vehicle. This can include a single family vehicle with tent, RV, camper trailer, and groups in multiple vehicles.

The USDA Forest Service provides guidance on fee stations and campground arrival in their USDA Forest Service [FSH 2309.13 Recreation Handbook](#).

Provide for adequate queuing at campground or fee site entrances to avoid vehicles stopping along access roads or highways.

- Make sure the entrance road to a campground area is nearly level with the primary road so good sight lines and level space for vehicles to queue can be achieved. It is recommended that the entrance station be located on the road that leads into the recreation area and at least 150 feet off the primary road. Busy or larger campgrounds will need additional queuing distances.

![Figure 3.6 Acadia National Park, Maine, Blackwoods Campground entry plan provides space for check-in, easy access for already checked-in campers, and a clear exit.](image-url)
Consider a design that combines the contact station and the site office into one building where those two functions occur in the same area. All new or rehabilitated entrance areas must be accessible and may include the following features:

- At least two incoming traffic lanes. One lane can be a bypass for registered campers with one for in-bound campers.
- Parking spaces for at least two cars, one of which must be a van-accessible parking space.
- A self-service fee depository.
- Vehicular turnaround space both inside and outside the entrance station.
- An outgoing traffic lane.
- Provide adequate space for large RVs, trailers, and/or boats depending on the services provided at the campground and park.

To enhance efficiency of administration, design developed recreation sites with a single entrance. Design to minimize unnecessary operation and maintenance travel, and where feasible, provide an alternate egress route that could be used if rapid evacuation of the site is required (figure 3.6).

Detailing the design of the entrance station or fee kiosk to match the overall park design character will ensure a cohesive park feel (figures 3.7 and 3.8).
Alternate Arrival Considerations

It is important to consider different means of visitors arriving at a campground or park. Public transportation, ride sharing, and bicycles are all increasingly popular ways to visit NPS sites.

More information on alternative and innovative transportation can be found here:

- NPS Alternative Transportation Program
- Federal Lands Transportation Program – Transportation Innovation Fact Sheet

Having a designated bus and ride/sharing drop-off, as well as a designated bike parking area, will allow the park to concentrate visitor use to a specific location and direct visitors, through proper paths and outdoor recreation access routes, to the fee kiosk, campground, or other services. Visitors arriving on bike packing or hiking trips often rely on the availability of biker/hiker campsites.

Make considerations to ease wayfinding for persons with vision impairments. This can be accomplished in a variety of ways such as using GPS, color-coded paths, or tactile maps.

Bus and Ride Share Drop-Off

The following are guidelines for bus drop-off zones:

- Ensure bus lane width and turning radius meet the desired vehicle type and can adapt for larger vehicles in the future.
- Place bus shelters parallel to the drop-off area and ensure that there is a six-foot, clear, pedestrian path adjacent to the shelter, at a minimum, to allow pedestrians to travel around the shelter.
- A bus shelter should be 10 feet high, and the overhang of the roof should be located two feet or more from the curb (figure 3.9).
- Provide eight feet by eight feet ground clearance adjacent to the drop-off area for a wheelchair landing and loading space (figure 3.10).
- Locate pedestrian crosswalks within clear sight lines of vehicular traffic (figure 3.10).
- Provide benches, trash and recycling, and wayfinding signage at the bus drop-off (figure 3.10).
- Provide real-time passenger information in both audio and visual formats when possible. If real-time is not available, post bus schedules and other contact information for ride-share or public transit. Provide alternative formats for people with disabilities.

Figure 3.9 A shuttle stop at Moraine Campground in Rocky Mountain National Park, Colorado, services the Bear Lake corridor.
Bicycle Facilities

Reference the National Park Service Active Transportation Guidebook for resources on walking and bicycling in national parks.

- Make sure bicycle lanes and shoulders on roads connecting to and within the park and campground are a four-foot minimum width; however, a six-foot width is preferred.
- Design bikeways to be a direct and convenient connection between paths, campgrounds, and other services.
- Provide a bicycle dismount zone where bicyclists can transition from the bike path to pedestrian sidewalks and walk their bikes to the designated bicycle parking area.
- Provide bicycle parking spaces, which could include bicycle lockers for long-term bicycle parking.
- Consider adding a fixed bike tool stand with basic bike tools and a tire pump. Refer to AASHTO Guide for Developing Bicycle Facilities, Chapter 4, Design of On-Road Facilities for detailed information.
- Adventure Cycling also provides biking and camping guidance in their Guide to Bicycle Camping.

The following are bicycle rack placement and overall specifications from the AASHTO Guide for Developing Bicycle Facilities, Section 6.3.1 and 6.3.2. Additional Bicycle Parking Guidelines are available through the Association of Pedestrian & Bicycle Professionals (figures 3.11 and 3.12).

- Place rack units aligned end-to-end a minimum of 96 inches apart.
- Place rack units aligned side-by-side a minimum of 36 inches apart.
• Support the bicycle at two points above its center of gravity.

• Accommodate high security, U-shaped bike locks.

• Accommodate locks securing the frame and one or both wheels (preferably without removing the front wheel from the bicycle).

• Provide adequate distance (minimum of 36 inches) between spaces so that bicycles do not interfere with each other.

• Do not contain protruding elements or sharp edges.

• Do not bend wheels or damage bicycle parts.

• Do not make the user lift the bicycle off the ground.

Figure 3.12 Grand Canyon National Park bicycle rental and café.

Signage

Signs are an integral built feature within a campground as the primary way the National Park Service communicates with park visitors. Not only do signs provide the regulatory or enforceable requirements within a campground, but they also provide directional or wayfinding information, safety/warning, identity informational guidance and interpretive information. Consider signs within a campground as an integrated system even though each sign has a specific function within the campground. When combined the signs enhance the visitor experience by delivering information. To increase efficiency and reduce sign fatigue (too many signs), develop a campground sign plan to identify sign layout and messages.

The design of the signs may vary slightly from park to park, specifically with the parks that already have a sign standard developed. However, parks should consult with the National Park Service Sign Program, located at the Harpers Ferry Center prior to beginning a sign plan. This program helps establish the National Park Service’s identity through developing and maintaining sign standards. The NPS Sign Program has three main categories for signs: Identity (entrance signs), Motorist Guidance (Road signs), and VIS (Visitor Information System). The VIS signs are the regulations, entrance fees, trailheads, trail directions, warnings, restrooms, campsite numbers, etc. Consulting with this program prior to updating park signs in campgrounds will save parks time and
money by utilizing standards already developed and most importantly provide signs that are consistent across the service. See Director’s Order #52C and Sign Program SharePoint.

Visitors who travel from park to park are greeted by a graphic language that they come to know and understand. Communication is more assured, more rapid, and more effective. Furthermore, …visitors are reminded that individual parks are part of a larger organization with common practices and shared purposes. (DO #52C)

A campground can often become “littered” with signs. This creates sign fatigue (too many signs) for a visitor and can sometimes render signs to be ineffective because the visitor stops reading them. A campground sign plan can greatly reduce the number of signs and aid in generating a more efficient message, one that can often convey several pieces of information at one time. Where practical, use symbols to ensure that information is inclusive and understood by all, regardless of whether English is the visitors’ primary language (figure 3.13). Additionally, a campground that is part of a cultural landscape and/or historic district may have signs that contribute to that cultural landscape and/or district with design character (e.g., materials, lettering, size, orientation) that can be maintained and can inform additional compatible design interventions as needed to maintain the visual quality of the campground. Many historic lettering sizes, colors and styles can be difficult for persons with visual impairments. Supplement such signs with others that are more easily readable or through technology. To protect signs from sun damage and increase their lifespan, place signs directly north as feasible.

Accessibility. Signs are covered by the Architectural Barriers Act. Specific scoping information related to signs can be found under Scoping F216 and technical requirements in ABAAS Chapter 7. Prior to developing signs accessibility requirements must be included.

Harpers Ferry Center has resources available for NPS-specific accessibility guidelines related to publications, exhibits, audiovisual programs and tours, wayside exhibits, signage, and web-based media.

Figure 3.13 Catoctin Mountain Park, Owens Creek Campground Map uses symbols to convey locations of campground services.
Regulatory Signs

O&M - Regulatory Signs and Pavement Markings

- Minimize the use of numerous colors in pavement markings. This reduces the need to clean the spray machine between the changing of colors.
- Minimize and consolidate signs as feasible to reduce sign fatigue and future maintenance.

Regulatory signs and pavement markings in campgrounds are used to inform visitors of campground regulations that enforceable by law. They indicate requirements such as a speed limit, parking space, required fee, or other. These can be found in the park compendium or the Code of Federal Regulations. Include regulatory signs in the overall sign plan and use only to the extent necessary to clearly communicate regulations but not become a visual distraction.

The FHWA Manual on Uniform Traffic Control Devices (MUTCD), latest edition defines the standards for signs and pavement markings for both bicycle and pedestrian infrastructure and is routinely used for guidance related to proper application, installation, and maintenance of traffic control devices on all public streets, highways, bikeways, and private roads open to public travel. In general, practitioners follow the MUTCD, or state specific MUTCD versions, whenever practicable unless there is a reason to deviate from established policy. Designers have discretion to use a formal design exception to use for example, smaller or fewer signs than recommended in the MUTCD. A memorandum of understanding between the NPS and the FHWA, updated in 2006, states that on campground roadways and other similar low-speed, low-volume roadways, signs may differ from the MUTCD if the National Park Service submits these signs under the experimental rules set forth in the MUTCD and obtains FHWA approval prior to their initial use. Contact a regional Federal Lands Transportation Program (FLTP) Manager for more information.

Common MUTCD Signs within a campground include:

- Stop (R1-1)
- Yield (R1-2)
- Speed Limit (R2-1)
- Do Not Enter (R5-1)
- Wrong Way (R5-1a)
- One Way (R6-1, R6-2)
- Pedestrian Crossing Signs (R9-2, R9-3)
- Road Closed Sign (R11-2)

Pavement Markings

Pavement markings are a relatively low cost and important component in a campground. When used effectively, these markings can provide valuable information without the need for a vertical sign. The markings can indicate accessible spaces and associated aisles, check-in lanes, no parking areas, RV check-in measurements, and more.

When possible, minimize the use of numerous colors in one area such as red no parking, yellow loading, and white parking space lines (figure 3.14). Use of multiple colors may be unavoidable, however, as a maintenance enhancement look for opportunities to use a single color for marking curbs and other reserved areas (figure 3.15). Some states and counties have specific pavement marking requirements and parks may choose to follow those requirements to maintain consistency in a region or state.
Other Signs

Additionally, the National Park Service Sign Program, located at the Harpers Ferry Center, has National Park Service specific sign examples that can be updated/altered for park needs. These may be signs specific to fee collection, administrative parking, or a myriad of other campground specific requirements (figures 3.16 and 3.17).

Recreation One Stop is working with Harpers Ferry Center to provide the basic elements needed to promote and use QR codes for camping, on site payments, etc. This will create a consistent design approach for parks in the future.

(HFC sign standards)

Figure 3.14 Striping in different colors is visually unattractive and requires more maintenance.

Figure 3.15 Accessible parking space with white parking and white aisle.

Figure 3.16 US Fee Area sign is available from the Harpers Ferry Sign Program.

Figure 3.17 Examples of signs designed by the National Park Service Sign Program.
Emergency Management or Warning Signs

Where needed, sign appropriate emergency evacuation routes, clinics, or other emergency related information (figures 3.18 and 3.19). The importance of these lifesaving signs cannot be understated. For additional information and to understand where and how these signs are needed, consult your park or regional Safety Officer and the local town and county Emergency Preparedness Plan. Guidance for Emergency Management related signs can be found within the Manual of Uniform Traffic Control Devices under Emergency Management Signing. Other similar emergency management and warning sign examples can also be located on the National Park Service Sign Program website.

Figure 3.18 Example of an important Emergency Management Sign from the Manual of Uniform Traffic Control Devices.

Figure 3.19 Examples of warning signs specific to the National Park Service.
Motorist Guidance and Pedestrian Wayfinding

The elements of wayfinding are a series of visual, editorial, and environmental cues to help visitors navigate and experience a national park without confusion and conflict. The cues must enhance a visitor’s enjoyment and understanding of the park without damaging the park’s rich natural and cultural resources. Wayfinding refers to information in the physical environment that helps guide people between places.

Wayfinding can be signs, arrows painted on the ground, physical barriers along a path, graphics on a wall, and more. These signs are considered a key aspect of a meaningful and more desirable park or campground experience. There are several important directional or wayfinding signs within a campground, and some of the types are detailed below.

Motorist Guidance

Key components include speed limit, arrows and symbols, and, if needed, a simple and clear message (figure 3.20). Standard symbols are key to unifying National Park Service signage.

Figure 3.20 Examples of motorist guidance signage.
Pedestrian Wayfinding

Key components include arrows and symbols, and, if needed, a simple and clear message (figure 3.21). Provide wayfinding at key intersections or areas of frequent visitor confusion. Tactile wayfinding is required for persons with disabilities.

Campsite Loops

Campground loops should contain the name of the loop and the range of sites available within that loop (figure 3.22). Consider naming loops after place names from local cultural or natural history or flora/fauna commonly found in the national park. Ensure the loop signs are clearly visible to vehicles and easy to understand for all visitors, including those with limited English.

Individual campsite numbers. Each campsite should have its own distinguished number from other campsites and be labeled in sequential order in the primary direction of vehicle arrival (figures 3.23 and 3.24). Many campgrounds label occupied campsite by clipping a paid slip to the campsite number post or carsonite post. Consider using reflective paint for nighttime navigation, but be cautious of overuse as too many reflective devices can be distracting for visitors. Make the maximum sign height 48 inches to improve accessibility in all sites. Ensure that there is a location to fasten the clips if a campsite is managed in this manner.

Advanced notification of campground location, capacity, etc. Campgrounds can often avoid congestion within the campground if the status of the campground (open, closed, or full) is identified at a critical decision-making location. This can be at a turn off to the campground, an entrance station, or anywhere else visitors need status information. If this sign is manual, it will require personnel to update the status on a frequent basis.

Figure 3.21 Examples of pedestrian wayfinding signage.

Figure 3.22 Campground loop sign example.

Figure 3.23 Kenai Fjords National Park, Exit Glacier Campground, accessible campsite label. Figure 3.24 Example of an individual campsite number.
Informational Signs

Check-in Procedure and General Campground Rules

These signs contain pertinent campground-related information with a campground map, regulations, check-in information, and more (figure 3.25). This is particularly important for late check-ins or visitors arriving after the check-in is closed. Providing a tactile map (preferably portable) for blind visitors will allow familiarization with campground layout, including the relationships of individual campsites and facilities such as comfort stations and amphitheaters. (These can be inexpensively made using 3D printers.) In addition, include information on the park website that could be linked on-site using a QR code.

Figure 3.25 Example of fee, registration, and regulation information for a campground.

Trailhead Examples

Some campgrounds provide access to trails or trail systems leading offsite (figure 3.26). Ensure trailhead signs include accessibility information so that visitors can determine their ability to access the area.

Baseline Requirements for Trailhead Signage

1. Length of the trail or trail segment
2. Surface type
3. Typical and minimum tread width
4. Typical and maximum running slope
5. Typical and maximum cross slope

Accessibility.

ABAAS F216.13 Trailhead Signs. Where new trail information signs are provided at trailheads on newly constructed or altered trails designed for use by hikers or pedestrians, the signs shall comply with ABAAS 1017.10.

ABAAS Advisory F216.13 Trailhead Signs. New trail information signs are required to comply with ABAAS 1017.10 regardless of whether the newly constructed or altered trails comply with ABAAS 1017.
If trail information signs designate the name of the trail, only the name of the trail is required to comply with ABAAS 703.5. (See F216.2) Tactile characters are not required on exterior signs. Trail information signs are not required to display the International Symbol of Accessibility.

ABAAS 1017.10 Trailhead Signs. Trail information signs at trailheads shall include: (1) Length of the trail or trail segment; (2) Surface type; (3) Typical and minimum tread width; (4) Typical and maximum running slope; and (5) Typical and maximum cross slope (figures 3.27 and 3.28).

Figure 3.26 These examples show a comprehensive approach to effectively communicate trailhead information. Information is delivered multi-modally. On the top: a 3-D model can be used to understand the memorial without sight. (Flight 93 Memorial.) On the bottom: The upright panel provides information visually, while the horizontal panel provides the same information tactiley, with braille and textures to differentiate areas (Abraham Lincoln Birthplace trailhead panel, Harpers Ferry Center.)

Figure 3.27 Grand Canyon National Park, Hermit Road Greenway accessible trail sign.
Recycling Signs

Standardized signage on recycling/composting/waste receptacles throughout the parks, as well as within the campgrounds, supports greater participation in the recycling program by directing visitors to collection locations (figure 3.29). Recycle Across America is a great example of standardized labeling. Effective communication with visitors can significantly reduce visitor waste. Other areas such as at the campground that can provide information include check in, bulletin boards, inside comfort stations, and at the campsites.

Figure 3.29 Picnic table signs used at Grand Teton National Park.
O&M - Campground Access: Roads, Routes, and Paths

- Paved roadways and campsite parking are recommended where appropriate because of advantages related to accessible surface, consistent grade, delineation of space, dust control, durability, and maintenance.

- Ensure roadways have a proper place to drain such as a swale or detention basin or open area that will not become eroded by increased run-off.

- Consider storm water management, emergency vehicle, and waste removal operations when defining roadway widths and turning radii.

- Tree limb heights need to be considered for large vehicles.

- Follow sound engineering principles when constructing any roadway. For example, every road requires proper drainage and should be crowned or be angled slightly to shed water. Ditches, culverts, or swales may be required to facilitate runoff from storm events.

- Roadways are easiest to maintain if they are paved with asphalt, concrete, or other hardened surface.

- When paving a roadway, consider a safety edge. This assists drivers and cyclists and eliminates an abrupt edge that can often be a tripping hazard.

- Paving also minimizes routine grading required on gravel roads in tight areas and allows users with mobility issues to use roadways as an accessible route.

Figure 3.30
Roadway and Campsites in Lake Mead National Recreation Area, Arizona, Nevada, Boulder Beach Campground.
Roadways and Paths

This section covers motor vehicle, bicycle, and pedestrian access within campgrounds and design considerations for roadways and the pathways associated with the campground facility.

Campgrounds are often a part of a larger developed recreational facility (boating facility, lodging, visitor center, stores, etc.), and the roadways associated with these areas should have a distinct order of hierarchy. Often, the main park road will lead to an arterial roadway that brings the visitor to a developed area with signs to direct the visitor to the campground via a collector road. The collector road is often considered the main campground road, which leads the visitor into and through the campground. Lastly, the local road will often consist of the campground loops that connect to individual campsites.

This hierarchical road system aids wayfinding for visitors and provides visual cues based on road width, width of shoulder, and presence or lack of striping (figure 3.31). This is especially important in large, densely wooded campgrounds, where sight lines are limited and loops may be confusing. This is also a passive transportation design technique used to control vehicular speed.

Much of what a driver perceives as roadway width relates to the road prism (widths of travel lanes + width of paved and unpaved shoulder + ditch and adjacent mowed area). Many times, travel lane width can remain consistent throughout a district and by adjusting the areas adjacent to the pavement edge; define the perceived hierarchy.

Figure 3.31 The hierarchical road system aids in wayfinding for visitors.
Roads designed for campground areas must provide adequate dimensions for the largest vehicle allowed and/or expected to use the campground or specific location within the campground. However, the general desire in most NPS campgrounds will be to design campground roads in a manner that requires a slower speed with less formal shoulder areas than may be found on the main park road.

Site characteristics will often dictate the level of standard used and each park must determine what size emergency vehicles (i.e., fire trucks), operational vehicles (i.e., garbage trucks), and recreational vehicles are allowed into each area. For instance, some park campgrounds may only allow RVs in one loop and plan to maintain all operational and emergency services on the collector roads. This would mean that the minimum roadway width and turning movement for these types of vehicles applies to the roads that allow that use. It is important to note that minimum standards are often not the recommended solution. The following was adapted to include slightly larger radii than the minimum for each vehicle type (table 3.1). If feasible, apply an increased width and a larger, more accommodating turning radius to provide an easier visitor driving experience, less resource damage, reduced maintenance, and greater future adaptability.

Additional resources can be found here:

- FHWA resources for roadway planning and development
- National Park Service Park Road Standards - 1984

<table>
<thead>
<tr>
<th>Vehicle Image</th>
<th>Vehicle Type</th>
<th>Approx. Length of Vehicle Type (Feet)</th>
<th>Desired Turning Radius (Inside) (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single Vehicle, van, car, truck camper, etc.</td>
<td>12–18</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Truck with Fifth-Wheel Trailer</td>
<td>32–45 (trailer) + 10 (truck) = 55</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Type A Motorhome</td>
<td>25–45</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Type B Motorhome</td>
<td>18–24</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Type C Motorhome</td>
<td>20–31</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Travel Trailer</td>
<td>13–40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Pop-up Camper Trailer</td>
<td>10–20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Fire Truck - Large</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Paramedic Ambulance</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Large Garbage Truck</td>
<td>30 (38 with front extended)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Large Plow Truck</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 3.1
Vehicle type and important design information. Source: Primary reference material (Hopper 2007: 134). Most images expanded from KOA.
Figure 3.32 Larger radii are needed to accommodate larger vehicles. In situations where the roadway is narrow, the curves will need to be widened or hardened with gravel to allow vehicles to make safe turning movements.

Figure 3.33 Consider total height and length of tow vehicle in addition to trailer.
The total length of a fifth-wheel trailer can vary based on the model, but considering these dimensions can assist in roadway planning and design (figure 3.33). The total height of trailers is also important because the tree canopy, telephone, and power lines, may be impacted by the height of these newer vehicles.

Dumpsters are common in campgrounds and require specific trucks to ensure they are emptied (figure 3.34). The roadway must be designed to accommodate this maintenance equipment. Considering not only the turning radii, but the approach required to access the dumpster as well as the height of surrounding vertical objects are all important considerations in planning and design.

Collector (Primary Campground) Roadways

For the most part, the collector roadway should be two-way and have 12-foot-wide travel lanes (24-foot-wide minimum). This may be an increase in width from existing park road standards, and rehabilitation should be examined on a case-by-case basis and with the assistance of a professional. Two-way roads provide the driver and pedestrian flexibility and reduce confusion caused by one-way roads. Roadways in campgrounds should never terminate without a large vehicle turnaround, which is important for both emergency vehicles and larger RVs. Pavement markings, such as a centerline, can be used to help visitors better understand the direction of travel.

The roadway should have a low speed limit (often 20–25 mph) because pedestrians and many other user groups will often use these roadways.

Consider including a separate multiuse pathway or provide widened paved shoulders along the primary campground roadway (figure 3.35). This will aid in pedestrian safety. Use the [AASHTO Guide for the Development of Bicycle Facilities (2012)](https://www.trb.org/PORTALS10/SiteCollectionDocuments/AASHTO_Guide_for_Development_of_Bicycle_Facilities.pdf) for all planning and construction efforts to determine the appropriate solution for bicycles and pedestrians. The [National Park Service Active Transportation Guidebook](https://www.nps.gov/serv/active-transportation-guidebook.htm) is another resource for supporting bicycles. [ABAAS 1016, Outdoor Recreation Access Routes](https://www.nps.gov/serv/abaas-1016-outdoor-recreation-access-routes.htm) dictates requirements for accessibility.

![Figure 3.34](image-url) When using dumpsters, consider the overall size and operational height of collection vehicles.

![Figure 3.35](image-url) Section of vehicular road with cars, pedestrians, and buffer.
Local (Secondary Campground) Roadways

Local or secondary campground roadways are often campground loops. These are typically one-way and should have a 14-foot-wide travel lane if feasible. Secondary roads should be paved and designed to drain away from individual campsites (figure 3.36). Radii at intersections should be based on the requirements of vehicles expected to use or service the campground. Corners and curves should be widened where feasible to allow for easier turning movements by large vehicles. The roadway should have a low speed limit (often 10–15 mph) because of the various users in the area.

Adapting Existing Narrow Roadways

Many campgrounds were designed when smaller vehicles were the standard, and existing roadways now may be too narrow for modern trucks and recreational vehicles (see “Historical Design” section for historical widths) (figures 3.37 and 3.38). When modernizing existing National Park Service campgrounds, make accommodations for contemporary vehicle requirements, where feasible.

Prior to adapting an existing roadway consider the following:

- See “Design Process” for more considerations
- See “Site Development” for more considerations

Determine what size emergency vehicles need to access the campground and how they will access campground facilities. Determine if the roadway can accommodate their activities.

Understand maintenance operations, such as garbage collection, recycling, and solid waste removal. Define where each of these activities occurs and determine the vehicle size required to complete each activity. See “Solid Waste and Recycling Management” for more information.

Figure 3.36 Secondary roads should be paved and designed to drain away from campsites.

Figure 3.37 Two images show a truck with a fifth-wheel trailer cutting over a radius that’s too small in order to back into a campsite. In this case, a gravel buffer was added to extend the road width without additional asphalt. This assists the driver by providing a widened radius section and protects plant resources on the edge of the road.
Understand and research state RV size restrictions:

- Each state has the maximum allowable RV or travel trailer length. It is best to research the state allowances to determine what maximum length may be encountered within the state (this does not necessarily mean that the park allows this length of vehicle). In general, 45 feet is the average maximum (noncommercial) single vehicle length.

- Determine if the state allows the pulling of two trailers and the size restrictions. (For instance, a truck pulling a camper trailer and a boat.)

- Determine the maximum height that is feasible in the campground. Many fifth-wheel trailers and Type A motorhomes are tall and may hit overhanging trees and low-hanging utilities.

Engineers can use computer programs to assist in determining the maximum vehicle allowed in an existing and adapted campground. The Office of Federal Lands, Federal Highway Administration (FHWA) may be able to assist in providing technical information. Reach out to the regional Federal Lands Transportation Program Manager for more information.

Understand that increasing the existing roadway width and turning movements will likely reduce or alter the number of existing campsites. It will also likely include lengthening the campsite parking spur and overall configurations.

Lastly, a wider roadway can often cause vehicles to drive faster. Consider traffic calming techniques such as striping or speed bumps when necessary. There are limitations with the placement of speed bumps in a campground because of the low clearance of trailers and varying grades of campsite parking spurs.

Figure 3.38 Existing one-way loops shown in gray. Expanded pavement shown in red provides additional area to accommodate larger turning radius. Additional area can be expanded on the outside or inside of a curve. An engineer will determine what is most feasible.
Roadway Closure Gates

Roadway closure gates are important considerations for campgrounds that are operated seasonally. These gates require specific safety features for their successful operations (figure 3.39). The following actions are required for all park-owned roads to include those closed to the public or on roads where the National Park Service is responsible for maintaining and operating the gates:

- Gates must be fully retroreflectorized on both sides. If used on a one-way roadway or ramp, the retroreflectorization may be omitted on the side of the gate facing away from approaching traffic.
- Ensure swing arm gates are properly secured when in the open or closed position.
- Ensure swing arm gates are only secured in the downstream direction when open.
- Ensure swing arm gates are consistent with the Manual on Uniform Traffic Control Devices (MUTCD). The full MUTCD standard on gates is Section 2B.68 Gates.
- Inspect gates with respect to applicable standards and recommendations of Section 2B.68 Gates MUTCD.
- Inspect swing arm gates for proper functionality to include attached locking devices.
- Inspect swing arm gates’ reflectivity to be seen during hours of limited visibility (also in the MUTCD).

Vehicle Barriers

Many National Park Service campgrounds experience vegetation and site damage caused by motor vehicles encroaching onto undisturbed areas. Over time the repeated damage creates a user defined area that is denuded of vegetation and can encourage other visitors to use the area. For this reason, vehicle barriers have been used for almost a century within the National Park Service. The location of the barrier to the roadway is dependent on many factors, but roadway speed plays a large role. The material type is largely dependent on the campground or park architectural character.

Key aspects of a successful vehicle barrier are:

1. Eliminates or deters a vehicle from using the protected area.
2. Blends into the site or meets the architectural character of a park, regional area, etc.
3. The built feature is long lasting and requires minimal maintenance for upkeep.
4. Allows for successful maneuvering of the vehicle within the allowable area (i.e., vehicle barriers are not placed on the exact corners of a campsite driveway).
Boulders. Boulders are used frequently because the material blends in with the natural surroundings and is readily available (figures 3.40 and 3.41). Partially bury boulders to appear grounded or as if they have always been there (with bedding planes in natural position). They can be used to prevent visitors from cutting corners or delineating short sections of roadway. Using boulders that are the same size and spaced the same distance can create a monotonous appearance and may defeat the purpose of using a material that is intended to blend into the natural setting (figure 3.42). In areas where delineation is needed for a considerable length, consider low fencing or bollards, which are materials better suited for repetition.

Large vegetation or berms. Vegetation and berms are often great vehicle barriers. Consider maintaining large trees or shrubs adjacent to the roadway (where operationally feasible) to deter vehicles from unwanted parking or driving. Berms create separation from roadways or campsites and delineate parking and roadway areas (figure 3.43). For vegetation to be successful at discouraging visitor-created parking, it needs to be taller than five feet (figure 3.44). The hoods of many trucks are more than four feet tall, and some drivers are not discouraged by vegetation unless they can see it above their hood.
Fencing or bollards. Fencing can also be used to separate parking and roadways or to discourage driving through natural areas (figure 3.45). Materials vary (wood, metal, plastic) and should match park design guidelines or resource treatment plans.

Stone walls. In many parks, stone walls have become an architectural characteristic of the park or cultural landscape. In these areas, it is best to match existing stone walls (material and mortar).

If stone walls are used, consider the maintenance of these structures. Many parks find that concrete structures with stone veneer are hard to maintain. Additionally, some walls are built with no structural support and can be undercut over time from site erosion. Despite some of the maintenance considerations, stone walls can be an ideal campground defining feature (figure 3.46). Reference existing cultural landscape reports for treatment plans in historic campgrounds.

Campground Parking

Parking areas that are not within individual campsites have the same accessible requirements as parking lots elsewhere in the park. In general, National Park Service parking spaces should be 10 feet wide and 20 feet long. This width allows trucks to open doors and visitors to more easily pull into a space.

Campground parking is separate from campsite parking and is beneficial at areas such as comfort stations, water hand pumps, and fee stations.

- See “Pavement Markings” for parking area accessibility requirements.
- Many users arrive with two vehicles. Rather than limit these users to specific sites, consider adding parking for extra vehicles within each campground loop or in a central location.

- Parking at showers, laundry, and other key features is important, as these activities require additional supplies that many visitors may not want to carry by hand. Adding parking in these areas also increases accessibility for users of all abilities.
- Accessibility. The following ABAAS F208, 406, 501-502 apply to general parking areas. Each parking area needs to be scoped separately so there is a van-accessible space at each type of parking lot (table 3.2).
<table>
<thead>
<tr>
<th>FACILITY TYPE</th>
<th>PARKING SPACE PER SITE FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk-in Sites</td>
<td>1 space per campsite + accessible space requirement</td>
</tr>
<tr>
<td>Showers</td>
<td>1 space per 5 shower spaces + accessible space requirement</td>
</tr>
<tr>
<td>Laundry Facility</td>
<td>1 per 5 washers + accessible space requirement</td>
</tr>
<tr>
<td>Amphitheater</td>
<td>1 per 10 amphitheater seats + accessible space requirement</td>
</tr>
<tr>
<td>Entry Check-in</td>
<td>A minimum of 2 sites (one accessible), as feasible for demand</td>
</tr>
<tr>
<td>Day Use Picnic Area</td>
<td>1 per picnic table + accessible space requirement</td>
</tr>
</tbody>
</table>

Table 3.2 Parking Requirements Based on Facility Type

Connector Routes (Paths)

Connector routes (paths) between campsites and comfort stations are important components of a campground. The path width will vary depending on the number of users and the facility that it connects (figure 3.47). Campsites generally experience social paths or visitor-created paths to comfort stations. As feasible, design site paths in locations that provide centralized access. Paths that are roughly six feet in width, have a firm and stable surface and located in a central location will entice more visitors to use and minimize visitor-created paths. These primary paths are considered accessible routes and walking surfaces. Campground design should consider how users are moving through the entire campground without vehicles.

Accessibility

Specific to routes the following sections may apply depending on what services are linked: (ABAAS F204, F206, 301-304, 307, 401-410, 504-505). Also reference ABAAS, Chapter 10 for Outdoor Recreation Access Routes.

Hiking and Horse Trails

Campgrounds are sometimes connected to larger trail networks. Consider trailhead signs and adjacent parking as necessary. These trails are often natural ground and roughly two feet wide (depending on use). Horse trails are generally natural ground and roughly three feet wide. Some accessibility requirements apply (ABAAS F247, ABAAS 1017). Additional trail guidance includes The USDA Forest Service Trail Accessibility Guidelines (FSTAG) and the USDA Forest Service Accessibility Guidebook for Outdoor Recreation and Trails.
Social Trails

Social trails, also known as user-created trails, are informal trails created by foot traffic. These paths often indicate preferred or more direct routes between destinations. These paths can be problematic and create erosion and unwanted ground disturbance. To avoid further damage, evaluate existing trail routes, identify where there are gaps, and formalize feasible social trails.

Campground Layout

There are many things to consider when developing a campground. After determining the need for a campground, consider location first. Place a campground in a way that avoids both naturally and culturally sensitive resources. Locate campgrounds close to recreational opportunities for convenience and so that development is clustered. Design campgrounds as neighborhoods, where all services are easy to access from each campsite connected by paths, signage to orient visitors to services within and out of the campground, and simple circulation throughout the campground. Reduce stress for the driver by simplifying vehicular circulation, minimizing pedestrian conflicts, and accommodate the requirements of large vehicles by providing adequate space for turning, backing, and good overall visibility. Campgrounds or campground loops that are tent only can be designed for single or van vehicles.

Vegetation. Vegetation plays a huge role in the atmosphere of a campground. Use native trees, shrubs, and perennials to enhance existing vegetation in-between each campsite to provide privacy and separation. Vegetation will also help delineate each campsite, making it clear where each site starts and ends. Depending on viewsheds and access to services, vegetation can be light to dense. In some instances, to minimize social trails or other unwanted visitor movement, the use of natural materials such as rocks can be used to define campsite spaces and access paths. Visitors will search for any available wood—whether dead and down or cut living—for use as firewood. Campgrounds may become denuded of vegetation if not carefully managed and education is not provided.

Waterfront sites. There are many campgrounds located on waterbodies, such as rivers, lakes, and streams. Depending on the water feature, campsites may be prone to flooding or other natural events, and it is important to design for this. Ensuring the resiliency of services that are provided will decrease maintenance costs over time such as using a waterproof facility or locating built amenities outside of typical flood areas. Waterfront sites may also invite visitors to launch boats directly from their site; consider providing a boat launch if this is not desirable.
Layout Design Considerations

The most common campground layout throughout the National Park Service is the loop layout. Functionality in the loop design has, over time, proved it to be an efficient campground layout. The loop layout can accommodate different campsite types (tent, RV, group) in the same or separate loops and provide for separation of users but also group facilities such as comfort stations in central locations (figure 3.48). A National Park Service Campground should use these design considerations to renovate existing campgrounds and design future layouts. The following list of considerations is intended to assist in both redeveloped and new campground layouts. Using the guidance will help designers maintain what has worked well in campground design while adapting to changing uses and technologies. Additionally, by using this list, a modern NPS campground can better maintain the historical design intent and mitigate potential adverse effects to a campground.

Vegetation

- Avoid sites with cultural or natural resource sensitivity, and protect native and culturally sensitive vegetation (including mature trees and shrubs).
- Relieve compaction and amend soils as needed before replanting.
- Revegetate denuded areas with native plants to screen each campsite.
- Arrange new plantings in arrangements that reflect natural or naturalistic patterns. Consider natural forest succession to ensure screening remains as trees and vegetation age.
- Screen campgrounds from park roads through plantings.
- Revegetate as part of construction to repair construction impacts and surround each campsite with screening vegetation.
- Create a defensible space between built structures and vegetation to help slow the spread of wildfire and protect built structures from fire damage.
- Ensure adequate vegetation clearance on all roads leading to campgrounds and roads within campgrounds to reduce the likelihood of damage to vehicles (as feasible to resource protection).

Figure 3.48 Great Smoky Mountains National Park, Tennessee, Cades Cove Campground.
Roads and Paths

- Retain character-defining features of existing campground roads and paths.
- Retain or apply Meinecke's layout of one-way loops/parking spurs in new campground design.
- Design of roads and access need to consider longer RVs, trash trucks, and emergency vehicles (including turning movements, pull-offs, parking spaces, etc.)
- Reserve impermeable paved surfaces to loop roads and parking spurs rather than campsite living areas, which should be permeable. Nonpaved surfaces need to remain firm and stable for accessibility (figure 3.49).
- Minimize use of extruded concrete curbs and mountable curbs to reduce the urban feel on naturalistic character. Understand that many users may need a precast bumper cue to understand where to stop within a campsite space.
- Use gravel paths that are firm and stable in replacement of concrete paths. This path surface blends in better with the natural environment and has a unique textural and sound quality.
- Align paths to connect campsites to common areas, key natural features, and other services using a curvilinear (rather than geometric) alignment.
- Delineate paths using stone, rock, or log edging to avoid social trail creation (and associated resource damage).
- Limit striping of asphalt pavement (e.g., fog-lines, parking spaces, no parking zones) to reduce visual intrusion on naturalistic character.

Figure 3.49 Gulf Islands National Seashore, Florida, Mississippi, Fort Pickens Campground
Topography

- Retain and protect character-defining topographic features. Use natural topography of site to guide location of roads, campsites, buildings, services, and trails (figure 3.50).
- Use topography to screen infrastructure (campsites, roads, paths, buildings).
- Use low rooflines, natural materials, and colors where appropriate to blend architecture with topography and surrounding landscape.

Viewsheds

- Protect and enhance character-defining views and vistas for visitor viewing from campground common areas and individual campsites (figure 3.51).
- Use key vistas and the creation of vistas to influence campground orientation and layout.
- Screen campgrounds and associated infrastructure from park roads.

Soundscapes

- Protect and enhance character-defining soundscapes by screening campgrounds and associated infrastructure from park road noise (figure 3.52).
- Where pavement is required in or near campgrounds and road speed exceeds 45 mph, consider using quiet pavements (project example: Quiet Pavement Project at Death Valley National Park).
- Consider adding limitations on generator use.
Campsites

- Make furniture (picnic tables, cooking areas, tent pads, bear boxes) durable, visually minimal and accessible to all people (figure 3.53).

- Maintain relatively flat surface to reduce erosion and increase accessibility and camper comfort. Smaller RVs, camper vans, and car tents do not have vehicle leveling ability.

- Provide easy access to natural features of the park (e.g., trails, views, natural outcroppings, streams).

- Use natural delineators of stone, rock, or logs anchored into ground to prevent campsite enlargement and resource impacts.

- Be sensitive to the needs and the diversity of the visitor. Develop sites that meet the needs of those with physical limitations, parents with small children, and larger families.

- Meet the needs of special populations in campsites such as camp hosts, seasonal volunteers, SAR (Search and Rescue), and summer camp programs. For example, camp hosts are typically located at the entry of the campground and are provided utilities for long-term stays.

- Replace missing amenities/features of campsites to ensure each campsite has similar services as identified for new construction. Replace with a design style comparable to the existing or character-defining style of campground.

- Alternate campsite entrances so they are not directly across from one another. This will help build flexibility into the campground roads for maneuvering around large vehicles.

Figure 3.53 Sequoia and Kings Canyon National Parks, California, Atwell Mill Campground
Buildings and Structures

- Repair and rehabilitate existing buildings and structures to retain their character-defining features, while updating with durable and maintainable products. Minimize the required footprint of new construction.

- Modify the design of existing buildings in a compatible manner that harmonizes with the original design.

- Use native and/or culturally sensitive and appropriate materials to the maximum extent possible.

- Use dark colors for materials/finishes to blend with the landscape: primarily browns/earth tones. Light colors may be required for desert landscapes (figure 3.54).

Fire Protection

- Build with fireproof materials (if possible) and upgrade historic wood shake roofs underlayment and roofing boards to meet fire requirements.

- Consider adding fire hydrants that can be used for structure, vehicle, and wildland fire fighting.

- Create a defensible space between built structures and vegetation to help slow the spread of wildfire and protect built structures from fire damage.

- Work with regional and park fire programs to establish Fire Management Plans to include campground protection and protection of cultural and natural resources located within existing campground (figure 3.55).
Campsite Distribution in a Campground

Distribute a range of campsite types within a campground using the **market analysis tools** described earlier in this guide and historical use data as it is available. See “**Understanding the Visitor**” section to find out how to gather information on visitor preferences, which can assist in determining the distribution of campsite types. However, if data is not available in general, consider a diverse distribution of campsite types. Equally distribute accessible sites among the different campsite types (tent, RV, group) and among different campsite experiences (wooded, open, near water, close to comfort station, etc.). Separate campsite types (tent, RV, group) as much as possible. Separating the various campsite types will help reduce visitor conflicts and provide for a more enjoyable camping experience for all users. This can be accomplished by having different campground loops, with RV sites that allow generators in a loop closest to the main park road and tent and walk-in sites located in a more secluded area (figure 3.56). Group sites should also be separated from the other user groups.

![Campground Map](image)

Figure 3.56 Ozark National Scenic Riverways, Missouri. Big Spring Campground map demonstrating numerous loops, paths, river, and spring access and on-site facilities.
The ratio of accessible campsites to standard campsites are determined by ABAAS F244.2 (table 3.3). The National Park Service should strive to make every campsite accessible, recognizing this is not always feasible.

<table>
<thead>
<tr>
<th>Total Number of Camping Units Provided in Camping Facility</th>
<th>Minimum Number of Camping Units with Mobility Features Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2 to 25</td>
<td>2</td>
</tr>
<tr>
<td>26 to 50</td>
<td>3</td>
</tr>
<tr>
<td>51 to 75</td>
<td>4</td>
</tr>
<tr>
<td>76 to 100</td>
<td>5</td>
</tr>
<tr>
<td>101 to 150</td>
<td>7</td>
</tr>
<tr>
<td>151 to 200</td>
<td>8</td>
</tr>
<tr>
<td>201 and over</td>
<td>8, plus 2 percent of the number over 200</td>
</tr>
</tbody>
</table>

Table 3.3
Camping Units with Mobility Features.
Source: ABAAS Table F244.2

Campsite Layouts

In a campground, there can be many different types of individual campsites (figures 3.57 and 3.58). Depending on the visitor needs and purpose for visiting, these can vary from traditional tent-only sites, walk-in sites, RVs of varying sizes, equestrian users, boat-in, and more. To ensure appropriate amount of space between campsites, estimate roughly 11 and 15 campsites per acre. No campgrounds are the same, and the number of campsites per acre may vary; however, in general, National Park Service campgrounds should consider ample space between campsites.

The four most common types of campsite layouts in a developed campground include:

- **Vehicle and tent campsites.** These sites require roughly 3,000 square feet of space each, including parking and space between campsites.

- **Large RV campsite.** The lengths allowed will vary by campground. When accommodating Class A RVs and the longest fifth-wheel rigs, remember to also factor in slide outs, potential for an additional trailer, and generous spatial requirements for turning, backing, and parking. These sites require roughly 4,500 square feet of space (or more), including parking.

- **Group sites.** These sites vary widely in size; assume roughly 1,000 square feet for 1 person. This includes parking, comfort stations, and group campsite features. Group loops accommodating more than 200 persons may have more condensed spaces available per person.

- **Walk-in or bike-in campsites.** These sites require roughly 2,000 square feet of space not including parking.
Each campsite living area should include a tent space such as a square tent pad made of compacted crusher fines or an area cleared of vegetation (sloped 1.5 percent to drain), parking space, picnic table, fire ring, and other services. The typical living area of a campsite should meet the following space recommendations for services:

- 16’ x 16’ or 12’ x 18’ level tent space (or larger if extended families are common)
- 12’ x 14’ table and bench space
- 10.5’ x 10.5’ fire ring area

Campsite Spur Types

The campsite spur is often defined by how the vehicle uses its designated space; i.e., pull through or back-in. This is an important consideration when constructing a new or adapting an existing campground. The spur length will vary by the campsite type and are variable (table 3.4 provides the recommended but not required lengths). The campsite width can vary, but the minimum is required for accessible campsites as detailed in [ABAAS 1012](#) (figures 3.59, 3.60, and 3.61).

<table>
<thead>
<tr>
<th>Campsite Spur Size by Type</th>
<th>Van Accessible (Feet)</th>
<th>Single Parking (Feet)</th>
<th>Double Parking (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle and Tent</td>
<td>20’ width 24’ length</td>
<td>16’ width 24’ length</td>
<td>24’ width 24’ length</td>
</tr>
<tr>
<td>Large RV and Trailer</td>
<td>20’ width 60’ length</td>
<td>16’ width 60’ length</td>
<td>24’ width 60’ length</td>
</tr>
</tbody>
</table>

Table 3.4 Campsite Spur Size
Provide enough turning room to get into sites and avoid ditches, trees, and low limbs.

(Top) Figure 3.59 Accessible campsite with tent pad, picnic table, fire ring, and paved parking spur. (Bottom) Figure 3.60 Accessible double campsite with tent pad, picnic table, fire ring, and two paved parking spurs.
For traditional vehicle and tent sites, a pull-through or back-in parking stall can be used. Small RV, or camper van users typically use traditional car and tent campsites since the equipment size can fit in a car parking spur.

Emerging trends also include roof-top tents for vehicles. Although these accommodations will fit in typical vehicle and tent sites, considerations are needed to ensure there is proper clearance height in the parking spur and the parking spur slope is level so the vehicle will be level when parked. Providing this campsite information, along with general services and individual campsite pictures, on reservation sites will allow visitors to ensure their preferred camping accommodations will fit in the campsite. Additionally, vehicle charging stations are likely to be important in campgrounds and individual campsites in the future.

Large RV and Trailers with Slide Outs

Larger RV sites are becoming increasingly popular among campground users. These large vehicles require additional parking space, and additional space for any towed vehicles, boats, etc. Pull-through spots are more favorable and easier to navigate but also require more room, so consider a mixture of pull-through and back-in. Electric and water and wastewater hookups can be provided as additional services; however, the park must consider their capacity to expand utilities.

Common RV items to consider when designing RV campsites include:

- Water and sewer hookups are typically on the driver side.
- Electrical hookups are most commonly on the driver side or rear.
- Camper entry is typically on passenger side and/or back.
- Slide outs, awnings etc. add width to parking stalls and can be on all sides (figure 3.62).
• All RV campsites (pull-through or back-in) will intersect roads (at their centerlines) at no less than a 45-degree angle and no more than a 60-degree angle for ease in maneuvering. The parking spur is typically made of a concrete or asphalt pad for RV. The adjoining pad for the outdoor living area (see diagrams for details) can be made of an asphalt, concrete, or other hardened surface pad for RV and vehicle parking (figure 3.63).

• An individual RV campsite should be flat with a cross slope less than 1% and a longitudinal slope less than 2%.

• Consider how the vehicle will maneuver into the space in a way that allows the driver to see the hookup pedestals. Eliminate situations that force drivers to back into pedestals. If the access road is one-way, locate the utility pedestals on the driver side. If pedestals must be on passenger side, it is better to have a pull-through campsite. Consider ease of drivability/practicality during layout or reconfiguration of the loop roads and campsites.

• Consider RV vehicle height to avoid tree damage. See Vehicle/RV size table and graphic.

• In campgrounds with small loops or where RV’s are not allowed because of roadway constraints, sign each loop with the maximum vehicle length so that drivers know what to expect.

• For areas without water hook-ups at the site, allow space for units to park near a water hydrant while they fill their potable water tanks.
Host Sites

Specific sites may be developed for volunteer in park (VIP) or campground hosts (often volunteers) (figure 3.64). These types of sites often offer extra services such as water, power, and storage. Sometimes administrative sites offer staff the use of an administrative laundry facility that is not open to the general public. All host sites should meet requirements for accessibility under ABAAS. Ensure that VIPs and campsite hosts are adequately trained in nondiscriminatory protocols to avoid unintentional disability harassment, racial profiling, and ticketing of campers who might use campgrounds differently than the camp host is accustomed to (i.e., louder gatherings should be treated equally regardless of campers’ race). The desirable services for a host site include the following:

- RV water hookup with an upper hose bib with a backflow preventer (continuously connected to the host trailer) and a lower hose bib with vacuum breaker for other use.
- **RV sewer hookup.** In campgrounds where there is no sewer, this may require a separate vault or septic system.
- **Power hookup** – 50 amp
- Buried propane tank (as appropriate). This is important to provide heat and cooking without having to continually refill small propane tanks.
 - Reference Manual 48 Structural Fire
 - National Fire Protection Association (NFPA)48 Liquefied Petroleum Gas Code
- Large RV space with two additional parking spaces.
- Moveable picnic table.
- Fire ring.
- Bear box in areas where required (potentially oversized).
- Additional storage shed (as appropriate).
- In desert climates, consider a permanent shade structure to shade a parked RV and personal vehicle.

Walk-in Campsites for Car Campers

Walk-in sites provide a more solitary camping experience, while still providing access to all the services provided in a developed campground (figures 3.65 and 3.66). Consider installing solar charging pedestals for small devices in these campsites. Parking stalls that are clearly marked with the corresponding walk-in campsite are provided along the campground road. If two vehicles per campsite are allowed throughout the campground, then provide two parking stalls for walk-in campsites, which could be

Figure 3.64 A volunteer campground host checks in a campsite at Glacier National Park, Montana, Apgar Campground.

Figure 3.65 Walk-in campsites at Dinosaur National Monument, Colorado, Deer Lodge Campground.
accomplished through a nearby overflow parking lot within the campground. Provide an accessible path or outdoor recreation access route connecting the parking space to their respective campsites.

Walk-in campsite design should consider the ease of installing and removing personal property from a vehicle to the cabin and the proximity to the comfort station.

Bicycle/Backpacker Sites

If a park is a bicycle tourism destination, having bicycle-only campsites is important (figure 3.67). Bicyclists often travel long distances and end their journey at the park. Providing specific sites for these visitors is necessary. Bicyclists often travel light and require a smaller campsite footprint than typical car campers. Consider including services at bicycle campsites such as bike parking, bike repair station, storage lockers, electrical outlets, and showers. Reference the Guide to Bicycle Camping by Adventure Cycling Association for more specific information.
Equestrian Campsites

The US Forest Service has an excellent resource for equestrian campsites, such as the *Equestrian Design Guidebook for Trails, Trailheads and Campgrounds*. The following are key considerations from the guide. Most equestrian campers prefer pull-through sites, as it is easier to navigate with a trailer in tow. Place campsite living area on the passenger side of the road, since most trailers have access on the passenger side. Back-in sites may be preferable since the horse trailer is farther from the road. Provide additional parking areas for additional vehicles and trailers.

Equestrian sites should provide amenities beyond basic campground services (figures 3.68 and 3.69). These include a living area for the horses with horse tie-up posts away from the roadway. Ensure the horse area is somewhat level and there is proper shade during the heat of the day in these areas, either by vegetation or a shelter, and place the horse area downwind of the main camping area. Additionally, manure-specific collection areas are needed or signs indicating that visitors are to individually haul manure out of the park.

In equestrian campsites, vegetation management is very important, as some noxious weeds or native plants could be toxic to horses. Ensure park maintenance staff can identify toxic vegetation and know proper treatment. To avoid damage to vegetation, be sure to locate the horse area away from sensitive plants.

Equestrian campsites are unique and are sometimes underutilized campsites. If this appears to be an issue consider researching user groups (see “Understanding the Visitor” for more information) and making these types of campsites adaptive for use by other visitor types, such as group campsites.

Figure 3.68 Great Smoky Mountains National Park, Tennessee, Tow String Horse Camp.

Figure 3.69 Accessible pull-through equestrian campsite with tent pad, picnic table, fire ring, walkway to horse corral, and paved parking spur.
O&M - Equestrian Campsites

- Generally, the finer the surface material, the easier horse manure can be removed. Suitable materials include wood chips and shavings, loose aggregate, pea gravel, and soil. Usually the most economical and effective surface material for living areas is compacted, crushed aggregate with smaller fine material to help hold it together.

- Metal hitching posts last longer than their wood counterparts.

Recreational Boating Campgrounds

Recreational Boating Campgrounds provide a unique overnight experience with visitors boating to a designated campground to camp overnight. Typically, these sites cannot be accessed by other means (such as by vehicle), but parks may consider allowing visitors to hike in, similar to backcountry sites. Amenities at recreational boating campgrounds can vary, but typically include a tent area, **fire ring**, **picnic table**, and a shared **pit or vault toilet**. As a best practice, consider making recreational boating campgrounds a “pack-in pack-out” camping experience to eliminate the need for trash removal. Accessibility considerations for recreational boating facilities can be found in **ABAAS 1003**. For more information on water access planning reference the **River Access Planning Guide**.

If a park includes recreational boating campgrounds, it is important to provide docks or boat tie ups at each campsite, and incorporate accessibility features (figures 3.70 and 3.71). Without docks or boat tie ups, the continuous beaching of boats will erode the shoreline and degrade resources. Consider the following options for docks depending on the parks water environment (**British Columbia Park Design**):

- Where water freezes, use a portable dock so it can be removed seasonally.

- Where there is enough water depth and where water fluctuates, use a floating dock.

- Where water is very deep and there is a rough/rocky shoreline, use a permanent boat dock.

- The park may also consider providing a kayak dock or water ski dock depending on user groups.
Raised Platform Sites

Depending on site conditions, a raised platform campsite may be a great option to lift tents off the ground. See ABAAS F244 and Chapter 1013 for accessibility of tent pads and platforms. The raised platform is typically made of wood with an access ramp from the parking area (figure 3.73). Tents do not need to be provided for raised platform sites; however, canvas tents that attach to the structure are commonly used for glamping sites. These canvas tents on a raised platform are perfect for accommodating visitors that may not own all of the supplies to camp or want a slightly less primitive experience (figure 3.74). Check with your US Public Health representative if there are any concerns about pests (mice, bats, etc.) entering the tent and creating a health hazard for visitors.

Group Campsites

Group campsites are popular in National Park Service sites (figure 3.75). Although typical group sizes can accommodate 50 to 75 people, trends are changing, and there is increased demand for extended families or small group camping experiences. Consider incorporating small group campsites to accommodate diverse recreational users who are more likely to visit campsites with extended family and friends. Having a variety of group campsite sizes, if determined by the Market Analysis and Understanding the Visitor, will provide for a wider variety of group preferences. Group campsites can be designed in a way that allows for smaller group areas to be reserved separate from one large reservation.
For instance, group campsites can have several smaller tent clusters of approximately three tent pads and a large picnic table in a separate node. This design approach provides adaptive management so that visitors have more flexibility.

Typically, each group campsite should have their own vault toilet, or comfort station, enough tent space for the group size (which could be multiple tent pads or level clear ground space), enough picnic tables and possibly a pavilion to accommodate group sizes, group-sized fire rings or grills, and parking stalls for a mixture of cars and RVs.

To reduce visitor conflicts, it is also important to locate group sites away from the main campground or create a barrier between the two with vegetation or topography changes.

At least one, and preferably all, group campsites in a campground should have accessible features. This includes appropriate furnishings (picnic tables, tent pads, fire rings, grills, comfort stations) with clear floor space and firm and stable pathways between elements.

Allow for two to three acres for each 50-user group site.

Cabins, Fixed Walled Tents, Glamping, and Concession Lodging

Overnight accommodation cabins typically provide more services for visitors than a campsite but may range from very basic to luxury lodging (figures 3.76 and 3.77). Typically, cabins in NPS sites are concession-run, as the reservations, operations, and cleaning of the cabins require more management than a typical campsite. Each cabin should have two parking spaces and accessible routes connecting parking to the cabin, along with a picnic table and fire ring. Cabins may also have furniture or bunks with mattresses to provide sleeping space. Fixed wall tents may be provided on raised platform campsites as an alternative to requiring the visitor to bring a tent.

To reduce visitor conflicts, it is also important to locate group sites away from the main campground or create a barrier between the two with vegetation or topography changes.

At least one, and preferably all, group campsites in a campground should have accessible features. This includes appropriate furnishings (picnic tables, tent pads, fire rings, grills, comfort stations) with clear floor space and firm and stable pathways between elements.

Allow for two to three acres for each 50-user group site.
Cabin Location Recommendations:

- Cabins will be sited to take advantage of natural site landscape or topography.

- Cabins will consider the ease of installing and removing personal property from a vehicle to the cabin and the proximity to the comfort station.

- Cabin siting will respond to solar orientation to the greatest extent possible on each site to capture passive solar energy and support PV systems for hot water.

- Determine the separation between cabins by the density of vegetation that can be retained between the cabins. The minimum separation of cabins should generally be 100 feet unless site conditions allow privacy with closer spacing. On open sites, separation should be increased, and natural plantings introduced to give cabins a sense of privacy.

- Site and design cabins to be accessible wherever site conditions allow accessible access to the cabin. Depending on site features, there should be an accessible cabin for each experience that is offered. Reference ABAAS scoping requirements and guestroom requirements for more information (ABAAS F224 and ABAAS 806). Ensure accessibility to all common use areas of accessible cabins (including interior and exterior).

Backcountry Sites and Dispersed Camping

Backcountry campsites can also be found throughout many National Park Service sites, however, they typically do not provide many amenities, if any at all (figure 3.78). This guide will not provide any specifications on backcountry sites, as it is the park’s discretion to decide what services are provided in their backcountry sites. When developing or repairing backcountry sites, ensure that accessible backcountry sites are considered and included as feasible. Emerging technology is allowing mobility impaired users to access more areas in the backcountry, and perceived trail limitations should not be a determining factor in excluding backcountry sites.

Special Use Sites

Individual campsites are often set aside for special uses depending on park need. Some sites may be reserved for tribal use or temporary occupation by search and rescue teams or fire crews. Some campgrounds with unique wildlife issues have a cooking area where campers commune to cook to keep food smells in one area. Considerations such as these are made on an individual campground basis.
Campground Services

In this section, spatial considerations and carrying capacity of the campground are assessed with regard to campground services. During campground design, it is essential to assess which services are integral to the campground and if there is room for expansion of additional services in the future. This section outlines recommendations for distances between services and campsites and outlines other important facility related considerations in campground development.

Facility Distances to Campsite

Locate an accessible campsite closer but not necessarily right next to common campground services. The distances below help ensure easier universal access to services common in a campground (table 3.5). These distances are guidance and may vary greatly on the existing campground design and should ultimately be determined with design discretion.

<table>
<thead>
<tr>
<th>From Campsite To:</th>
<th>Easy (Maximum Distance in Feet)</th>
<th>Moderate (Maximum Distance in Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comfort Station</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Drinking Water Hydrant</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Trash Receptacle</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Vehicle Parking Space</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Picnic Unit/ Area to Vehicle Space</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Campground Shower</td>
<td>250</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 3.5 Facility Distances to Campsite. Information provided by the USDA Forest Service Region 4 Design Team

Determining Facility Capacities

The capacity for many campground services are determined by the maximum number of people using the facility at one time – Persons At One Time (PAOT). This is based on estimating the full capacity of the campground, including adjacent parking areas and other facilities using the campground services. The sizing of campground services such as water and wastewater systems uses peak flow data but ultimately relies on knowing the maximum usage at one time.

This can be determined by historical use data (with considerations for increased capacity as appropriate), or if this information does not exist, by the ratios below (developed by the USDA Forest Service) to estimate the maximum PAOT. The PAOT ratios have been developed based on actual recreational visitor numbers over time (table 3.6). Knowing the maximum PAOT can also assist with other important campground capacities that may be defined by a park (figure 3.79).
Table 3.6 Number of PAOT by Site Type

<table>
<thead>
<tr>
<th># OF PAOT</th>
<th>SITE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Single campsite - general and walk-in</td>
</tr>
<tr>
<td>10</td>
<td>Double campsite – general</td>
</tr>
<tr>
<td>1.5</td>
<td>Single campsite – motorcycle / bicycle</td>
</tr>
<tr>
<td>Site dependent</td>
<td>Group campsite</td>
</tr>
<tr>
<td>3.5</td>
<td>Parking space (trailhead, etc.)</td>
</tr>
<tr>
<td>40</td>
<td>Tour bus parking space</td>
</tr>
</tbody>
</table>

Example: A campground with 10 walk-in sites, 30 single campsites, 5 double campsites and a trailhead with 10 parking spaces, would result in the formula $(10 \times 5) + (30 \times 5) + (5 \times 10) + (3.5 \times 10) = 285$ PAOT at this campground. When determining the PAOT, use the exact numbers provided and round the final number, not the multiplier.

Figure 3.79 A campground with 26 campsites plus one group site of 18 PAOT equates to approximately 148 persons per day $(26 \times 5 \text{ PAOT} + 18 = 148 \text{ PAOT})$. Notice the designated accessible sites are distributed throughout the campground and exceed the minimum number required under ABAAS F244.2. Camping Units With Mobility Features. 500-foot radius bubbles ensure recommended moderate walking distance to comfort stations from most of the campsites.
Estimating Water and Wastewater Capacity

Water supplies need to be designed to meet the anticipated use of the campsite. The following guidelines provide a framework for determining how much water a campsite will need, depending on which services are included (table 3.7).

<table>
<thead>
<tr>
<th>Consumer Use</th>
<th>Water Gallons per Day Per Person</th>
<th>Wastewater Gallons per Day Per Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Facility — —</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Campground without flush toilet</td>
<td>5–10</td>
<td>N/A</td>
</tr>
<tr>
<td>Campground with flush toilet</td>
<td>20–30</td>
<td>25</td>
</tr>
<tr>
<td>Campground with flush toilet and shower</td>
<td>25–50</td>
<td>35</td>
</tr>
<tr>
<td>RV Trailer water connection</td>
<td>25</td>
<td>NA</td>
</tr>
<tr>
<td>RV Trailer water and sewer connection</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>RV Trailer Dump Station</td>
<td>20–30</td>
<td>40</td>
</tr>
<tr>
<td>RV Trailer Host Site</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Day Use — —</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Without flush toilets</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>With flush toilets</td>
<td>5–10</td>
<td>5</td>
</tr>
<tr>
<td>With flush toilets and showers</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 3.7 Guidelines for Estimating Water and Wastewater Capacity. Source: USDA Forest Service Handbook 7409.11, Section 44.11 – Exhibit 01 (recreation information only)

Water

Access to drinking water is important for users at developed campsites and should be considered as the most important campground service (as feasible by site constraints). In addition to drinking water, other ancillary water needs can include water for flush toilets, fire suppression needs such as fire hydrants, dish washing, and even laundering and showering at more developed campsites. The level of water service is determined by both the physical site constraints and management constraints. Size water systems according to domestic flow and fire flow (if required). Usage per person per day can be used in conjunction with the fixture unit method as well as historic flow data, if it's available, to determine domestic requirements. Under sizing a water system leads to campground water shortages or low water pressure, and over sizing a system causes difficulty to maintain water quality and meet water system monitoring requirements (residual disinfection). It is also costly to overdesign a system that is not fully utilized.
Consolidating facilities that require water such as flush toilet comfort stations, showers, and water hydrants is more cost effective both in construction and maintenance. It is also easier to design a system that is consolidated to a few central areas.

In planning for a water system upgrade or replacement, fire protection alternatives need to be developed and analyzed for risk, consequences, and costs.

Where the site is located within range of a local structural fire department, structural fire protection can be provided via options, which may or may not require major capacity development of the domestic water system. If the water system is to supply fire protection, provide quantities in accordance with requirements of National Fire Protection Association (NFPA) 1131 - Standard on Water Supplies for Suburban and Rural Fire Fighting. If response time, equipment and personnel capability are suitable and if buildings with sprinkler systems are planned for the site, then a hose and hydrant system that meets NFPA 24 – Standard for Installation of Private Fire Service Mains and Their Appurtenances would be the appropriate fire protection system.

For sites located beyond the limits of a local structural fire department, the water system should only provide capacity to meet the objective of preventing fire spread to adjacent wildland or structures spaced at least 40 feet apart (see NFPA 224 – Standard for Homes and Camps in Forest Areas).

Water System Design Process

All drinking water facilities must comply with federal, state, and local regulations pertaining to drinking water sources. The following is an outline of the design process of a typical campground water system as well as where the various codes are applicable.

1. For rehabilitation of an existing water system, find as much existing information on the water system as possible. Look in park records and eTIC.

2. Verify water system classification per Environmental Protection Agency/State/NPS regulations. NPS guidance can be found in Directors Order 83 and Reference Manual RM-83A. Water system classification will determine water treatment and monitoring requirements.

3. Determine if there are any archeological concerns at the proposed site of a new or rehabilitated system and ensure archeological resources are not impacted by the system.

4. Verify capacity and quality of water source; e.g., if using an existing well, are there records of well construction to confirm that construction meets current regulations? Are there well tests to confirm the raw water quality meets current regulations? Is the well classified as groundwater or groundwater under the influence of surface water? Is the water source a surface water source? Type of water source will determine water treatment and monitoring requirements.

5. Confirm Water Rights – Does the park have the correct water rights for the volume of water needed for this water system? Contact WASO – Water Quality Division for support, if needed.

6. Determine fire flow requirements (if any) – contact the authority having jurisdiction (AHJ), provide National Fire Protection Association (NFPA) and International Organization Standardization (ISO) calculations.
 a. Consider NFPA 1, NFPA 1142, the ISO method, and any other method deemed appropriate for the application by the authority having jurisdiction.
 b. If water for fire flow is required, determine if it will be supplied through a combined system (potable and fire water) or if it will be supplied through a system separate from potable (dedicated fire well, draft system, etc.)
7. Determine domestic requirements:
 a. Determine the maximum average daily demand and the peak demand.
 b. Consider future demand – Is there any expansion planned with this project or in the next 50 years?
 c. Consider looking at only the peak month or months for seasonal systems when determining the average daily demand.
 d. Use historic data – Collect past usage data if available—operators should have logs of pump run times and meter readings; a minimum of 5 years is ideal.
 i. Extrapolate for future based on existing if appropriate.
 ii. Ignore anomalies such as high-water meter readings, which are a result of line breaks or flushing lines when sizing system components.
 iii. If historic water system data is not available, see if other visitor use data is available, such as traffic counters, trail counters, counts from a visitor center/permit office, determining the PAOT as described in “Determining Facility Capacities.”
 iv. Consider turnover rates in facility usage in addition to maximum people at a site at one time
 e. Use published tabulated data for typical usage patterns (GPD/user) to predict future demand.

8. Determine supply and storage requirements (well and supply pumps, tanks, supply piping and treatment equipment).
 a. Size supply and treatment equipment for peak demand. National Park Service requires disinfection of every water system. Additional treatment may include iron/manganese removal, filtration, or more.

9. Determine delivery requirements and pipe sizes (pumps, transmission lines, network lines, and service lines).
 a. Use the fixture unit method to determine demand at each service.
 b. Conduct a hydraulic analysis to confirm domestic flows (and fire flows if applicable) are met at each service location

Configuration and appurtenances. The water system configuration and materials will vary widely depending on the location of the campground and the specific requirements for the system. In colder climates and in areas with campgrounds that will be open during colder months, lines, hydrants, and other water system features will need to be designed to protect against freezing. Configuration of water mains to minimize dead ends and looping of main lines as well as longer service lines is recommended to prevent dead-ends, which are a sanitary concern, and increase the potential for freezing.

Meters. Water systems for campgrounds should be metered. Meter the water at the source, if applicable, as well as at individual comfort stations or buildings with running water. Water meters are required for the operation and maintenance of a system.
Water Hydrants

Water hydrants, including water faucets on posts and handpump hydrants, are the outdoor devices from which people use to obtain drinking water.

Type of hydrants include frost proof, non-frost proof or a handpump system.

- **Frost-proof hydrants** are generally a manufactured product. These often require preventative maintenance to ensure moving parts and seals are working properly.

- **Non-frost-proof hydrants** are typically built by a contractor on-site. They are often made from Galvanized Steel Pipe, plumbing fittings, and a redwood 4x4 post. In areas where there are freezing temperatures, these hydrants must be drained to prevent pipe bursts (figure 3.80).

- **Handpump systems** are often used in less developed campsites. These systems are frequently the only method to obtain water from a below groundwater well. Handpump systems have specially design mechanisms to pull water up. The fixtures require upkeep and testing to ensure the water remains safe for users. The USDA Forest Service has additional information on accessible hand pumps (figure 3.81).

Ratios and distances. In a loop campsite design, ensure there is a minimum of one water hydrant per loop or an approximate distance of 100 to 200 feet from the farthest campsite. There are not any requirements for the number of water hydrants per PAOT. At a minimum, it is recommended that water hydrants be placed adjacent to comfort stations.

Place water hydrants in a central location that can accommodate a large number of campsites, picnic sites, and/or trailheads. When only one hydrant serves the entire campground, site it near the campground entrance or near a comfort station so that it can be easily identified by campground users.

Hydrants should always contain a backflow preventer (except on smooth nose faucets) and be spring loaded so they automatically shut off when not in use. They should contain a smooth nose which eliminates hoses from being attached and thereby reduces cross contamination. Drainage away from the hydrant is important to prevent puddles below the water source, such as a sloping concrete pad so water flows away to native vegetation.

In instances where both a drinking fountain and a water hydrant are provided at the same site, both features should share the same splash basin and underground supply lines, if feasible.
In climates with freezing temperatures, the plumbing system must be designed so that it can be fully winterized (figures 3.82 and 3.83). Depending on location, winterization can consist of heating the plumbing or completely draining the system. The latter method is most common but requires draining the water out of fixtures, water heaters, and service lines. For systems that are drained seasonally, the water piping system must be designed to drain, with sloping pipes. The minimum desirable slope is 2%.

Sustainability. Label all drinking water sources as either “drinking water” or “clean water” (figure 3.84). Water hydrants are different throughout the National Park Service and even within individual parks. Visitors are reluctant to fill water containers in campgrounds, picnic areas, or anywhere else if they are unsure if the water is safe to drink. As feasible, provide two types of hydrants. One that is good for filling a large container and one that is easy to use to fill a small water bottle with less pressure.
Accessibility. For water hydrants to be accessible, they need to incorporate appropriate height and reach, clearing around water source, and mechanisms designed for a variety of user abilities. It is recommended that every water hydrant has an accessible paddle handle to ensure all hydrants are accessible. Distances between water hydrants (see “Facility Distances to Campsite” for more information) and accessible sites should be minimized, and routes should be accessible. An accessible surface of concrete, asphalt, or firm and stable aggregate is required around the water hydrant.

The following ABAAS sections apply (with links):

- Locate the faucet or operable portion of the hydrant between 28 inches and 36 inches above the ground surface (ABAAS 1011.6).
- The faucet or operable portion of the hydrant must be within a 15-inch to 48-inch reach range. The clear space centered around the water hydrant should be 48 inches by 72 inches, with the long side of the area overlapping another clear space. This clear space should be firm and stable, with a slope no more than 2.08 percent for concrete, asphalt, or boards, and no more than 3.33 percent for alternative surfaces in any direction throughout the surface if needed for drainage. This clear space permits a forward or parallel approach to the water spout and allows enough room for someone in a wheelchair to turn around and leave (ABAAS 1011.2.1).
- Typical water handpumps can be challenging to use due to their piston-like pump mechanism, which requires a long reach. In addition, deeper wells require greater force to draw water. Accessible handpumps can be purchased to accommodate wells as deep as 40 feet and should comply with accessibility requirements for grasping, turning and pressure (ABAAS F205 and ABAAS 309).
- ABAAS 1011, Outdoor Constructed Features

RV Water Hookup

RV water hookups are provided as a standard garden hose bib attachment located on the driver’s side (figure 3.85). Locate the hookup 15 feet from the back of the campsite parking spur. When water and sewer hookups are located at the same spur, separate the two hookups by 10 feet or according to the state Department of Environmental Quality (DEQ).

Locate the water connection six feet away from the campsite parking spur edge and be protected with a wood or metal pole to avoid accidental vehicle damage. The hookup requires a backflow preventer. Accessible spaces require a minimum of three feet of clear space beside and in front of the water connection. ABAAS 1011.6.
Wastewater

Wastewater systems vary greatly depending on the development of the campground. In less developed campgrounds a simple vault toilet may serve as the wastewater collection, however, in large campgrounds, complex wastewater systems may be integrated with park systems to serve a campground. There are three approaches to updating or designing a wastewater system in a campground; these include:

1. A system integrated into the current park system to accommodate new amenities/usage,
2. Construction of a new system, or
3. Some combination of integration and new, such as adding leach fields to some facilities, while others are connected to a larger wastewater system.

When assessing a site for integration of sewer, look at the topography to determine drainage and slope areas as well as the presence of surface water, location of ground water, watersheds that would be affected, and downstream potable water sources.

Wastewater System Design Process

All wastewater facilities must comply with Federal, State, and local regulations pertaining to wastewater. The following is an outline of the design process of a typical campground wastewater system.

1. **Determine Design Flow**
 a. Wastewater design flows can be determined using the average daily demand for potable water, subtracting the fraction used for buildings not served by the sewer system and irrigation. If the wastewater collection system has not been rehabilitated recently, account for infiltration and inflow.
 b. Review regulations from applicable state and local authorities for the wastewater system. Some regulations required a multiplier is applied to the average daily demand.

2. **Design Collection System**
 a. Minimum slopes to be designed per International Plumbing Code (two percent minimum slope of gravity sewer pipes is common)
 b. Size pipes per International Plumbing Code (pipes should not be less than 4-inches in diameter).
 c. Install cleanouts, preferably double cleanouts, outside each building.
 d. Distance between manholes should not exceed 400 feet.

3. **Wastewater Treatment**
 a. There are many options for wastewater treatment. The best solution is to tie into a municipal system if possible. On-site treatment systems include septic tank and drain field, wastewater lagoons, spray irrigation, and wastewater treatment plants. Soils, topography, and maintenance capacity need to be considered when determining the best treatment solution for a site.

Ratios and distances. In determining the quality of wastewater to be treated or disposed, consider the number of sites, the PAOT, the number and type of fixtures to be installed, and whether there are plans to expand the campground area in the future.

Wastewater systems need to be sized appropriately, refer to “**Estimating Water and Wastewater Capacity**” for more information.
Under sizing a wastewater system leads to campground contamination issues and over sizing a system can cause unnecessary burdens on maintenance staff; however, consider the need to expand soon and what that expansion may entail.

Considerations. It is important to select a wastewater system that is simple and dependable, minimizes the need for special skills to operate, is reasonable in cost to construct and maintain, and is environmentally safe. It is also integral to select a wastewater system that meets the site requirement and complies with rules and regulations of federal, state, and local agencies.

Materials. Make new or replacement water lines and pressurized sewer lines out of high-density polyethylene. Make most gravity flow sewer lines out of polyvinyl chloride; however, there are applications where other materials may be suitable. Considerations in determining pipe material include pressure, bury depth, and external loading, existing pipe to connect to, and installation method.

Codes and resources:

RV Wastewater Hookup

When water hookups and sewer hookups are located at the same spur, separate the two hookups by at least 10 feet or according to the state Department of Environmental Quality. In addition, locate the sewer connection on the driver’s side toward the end of the spur and four feet from the edge of the parking spur. The sewer hookup should be located toward the rear of the parking spur for back-in campsites and 10 feet from centerline of the pull-through campsites (figure 3.86).

When water hookups and sewer hookups are located at the same parking spur, separate the two hookups by at least 10 feet or according to the state Department of Environmental Quality.

Accessibility. A sewer connection at a RV Trailer accessible site shall have a minimum 30-inch by 60-inch accessible clear space adjacent to, and centered on, the grade level outlet. Locate the sewer connection four feet from the end of the parking spur. The long side of the clear space must adjoin or overlap an accessible parking space or pull-up space for recreational vehicles. Bollards or other barriers shall not obstruct the clear space required in front of the hookups (ABAAS 1011.2.4).

Figure 3.86 Accessible approach to sewer hookup.

O&M - Wastewater:
- Parks can recommend that RVs do not use products with formaldehyde for their wastewater tanks, as these disrupt the digestion in septic and wastewater systems. This recommendation can be encouraged by requiring that campground stores operated by concessions only sell bio-degradable treatment.
- RV wastewater systems can be impacted when visitors use rocks to hold the sewer hose down. Inform visitors at check-in and with signs as needed.
Comfort Stations

Comfort stations are one of the most important components of campgrounds, as they are among the National Park Service’s most used and most frequently renovated structures. Availability of a clean restroom ranks among the highest priorities for visitors. See “Design Considerations” for more detailed information on the conceptual considerations. Comfort stations are often defined by the number of toilet fixtures or water closets (table 3.8). For example, maintenance staff will refer to an entire comfort station as an eight-fixture comfort station—meaning there are eight toilets total (including urinals) in the comfort station. This count does not include sinks.

Table 3.8 Ratio of Water Closets Per Person

<table>
<thead>
<tr>
<th>Number of Toilet Fixtures (Water Closets per Comfort Station)</th>
<th>Number of Persons</th>
<th>Distance from Farthest Campsite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>250 to 500 feet</td>
</tr>
</tbody>
</table>

*Campground fixtures/water closets ratio are developed to accommodate large bursts of use. For example, many comfort stations are used during the morning waking hours and the evening bedtime hours. For this reason, the ratio of fixtures per person may vary from other building codes.

There are two main types of comfort stations at campgrounds:

Flush toilets – Flush toilets can handle large numbers of visitors and do not emit odors but are generally more expensive because they require more infrastructure that has to be maintained such as drinking water and septic or sewer systems.

Vault toilets – Vault toilets do not require water, must be sized to handle the expected number of visitors, require periodic pumping, but are generally less expensive to construct.

Pit toilets and composting toilets are not considered for more developed campsites. Like vault toilets, pit toilets do not require water and require less infrastructure than vault toilets; they are primitive outhouses that are usually simple holes in the ground covered by a toilet riser. Pit toilets should be reserved for primitive or backcountry use and are not included in the design of a developed campground. In addition, composting toilets are not recommended for campground design, as they require more maintenance and are less effective in cold or wet climates.

In determining the type of toilet facility to install, consider construction, delivery access requirements, custodial operations, maintenance costs, availability of drinking water, and sewer connections. Also consider proximity to utilities, soil conditions and other environmental factors, the presences of nearby services such as a picnic area, trailhead, or other facility and accessibility. Another important consideration is to understand that more developed areas often generate visitor expectations that more developed comfort stations will be provided.

Ratios and Distances

In a loop campsite design, there should be a minimum of one comfort station per loop or a recommended 250 to 500 feet distance (see “Facility Distances to Campsite” for more information) from the farthest accessible campsite. An inclusive campground aims to provide all campsites to within roughly this distance, realizing that this is not always achievable. The number of comfort stations and their distances should be evaluated to a reasonable amount within a short walking distance.
The number of fixtures (unisex) should be located to serve approximately seven sites. This is based on an average of five persons occupying each campsite. Separated unisex comfort stations are encouraged in many situations. The use of unisex facilities has increased over time and is often preferred by visitors with disabilities and to ensure a welcoming environment to people of all genders and sexual orientations. Unisex comfort stations also provide more flexibility for campers and maintenance professionals. For example, unisex comfort stations provide flexibility for family groups, allow family members to better assist users with varying abilities, are gender neutral, and provide separation from other campers. In campgrounds with separate male and female comfort stations, the same ratio applies. Urinals may be substituted for up to one third of the fixtures (water closets) for males but only if there are multiple fixtures required.

An inclusive comfort station would consider the user group (figure 3.87 and 3.88). In areas where a visitor preference is to squat, consider implementing squat toilets. Because of their uncommon use in the United States, these fixtures should be considered as an addition to the total number of toilet fixtures added to a comfort station and not part of the total.

Finally, ensure the siting of each comfort station complies with state and local requirements regarding setback of on-site wastewater systems from open water, drinking water, and handpump water wells. Ensure the location of the comfort station is outside of the 100-year regulatory floodplain and outside of delineated wetlands. Siting facilities within wild and scenic river corridors (with setbacks) may have specific requirements. Such facilities (especially if water-dependent or water-related, such as boat accessed campsites) are usually permitted with proper best management practices (BMPs) and mitigation measures in place.

Materials

Ensure comfort station building materials are durable enough to weather the natural elements, including fire and snow loads, and will withstand time. Building materials should reflect what is readily available in the region, considering both cost and aesthetics and design relationship to other park/campground structures (overall character), including siting, rooflines (pitch), and other considerations.

Ensure that light fixtures are both energy-efficient, are naturally dark night sky-friendly, and have a timer with the potential to turn off during the late night. Dimming interior light intensity at night will ease the transition for campers between indoor and outdoor environments and minimize light trespass. A gabled roof with clearstory windows allows natural light to illuminate interior spaces.
Do not use shiny materials on window frames, light fixtures, or roof coverings. Use noncombustible roof coverings for new comfort stations.

Accessibility.

All comfort stations must comply with federal accessibility standards. These requirements determine architectural elements, such as door width and placement, stall size, and height of fixtures. They also affect siting requirements related to slope, distance, and the surface material of parking lots and sidewalks accessing the restroom. If existing comfort station buildings cannot be made accessible, then a second accessible comfort station could be constructed adjacent to the original comfort station to provide an accessible option, or signage directing visitors to the nearest accessible facility can be installed until the building can be replaced. Ensure the following amenities are within reach: toilet, toilet paper dispenser, faucet, soap dispenser, hand dryer, and waste receptacle. In addition, make floors to comfort stations flush (vertically) with the material outside of the comfort station to facilitate smoother ease on wheelchairs.

Comfort stations can be the most complicated facilities for accessibility because there are many codes associated with restrooms and restroom fixtures, including the following:

- **ABAAS 603.2.1 Turning Space.** The turning space shall be a space of 60 inches (1525 mm) diameter minimum.

 » Best practice, ICC ANSI 603.2.1 Turning Space (clearances). A turning space is provided within the room, 5’-7” (67”) diameter minimum for new facilities or 5’ (60”) for existing facilities. The required turning space is not provided within a toilet compartment. See Accessible Routes checklist for more detailed standards.

- **Concession run campgrounds operate under the Concessions Periodic Evaluation Program, which includes standards that must be met for campgrounds including comfort stations. See Campground Standards for Concessions.**

- **ABAAS 603.2.2 Door Swing (clearances).** Doors do not swing into the clear floor space or clearance required for any fixture. Doors are permitted to swing into the required turning space.

 » EXCEPTION: Where the toilet room is for individual use and an accessible clear floor space is provided within the room beyond the arc of the door swing, doors are permitted to swing into the clear floor space or clearance required for any fixture.

- **ABAAS 603.3 Mirrors.** Mirrors located above lavatories are installed with the bottom edge of the reflecting surfaces 3’-4” (40”) maximum above the finished floor. Mirrors not located above countertops with lavatories are installed with the bottom edge of the reflecting surfaces 3’-4” (40”) maximum above the finished floor.

 » EXCEPTION: Other than within accessible dwelling or sleeping units, mirrors are not required over lavatories or counters if a mirror is located within the same toilet or bathing room and mounted with the bottom edge of the reflecting surfaces 2’-11” (35”) maximum above the finished floor.

- **ABAAS 603.4 Coat Hooks and Shelves and 604.8.3 Coat Hooks and Shelves.** Coat hooks are located between 1’-3” and 4’ (15” and 48”) above the finished floor. Shelves are located between 3’-4” and 4’ (40” and 48”) above the finished floor.

- **ABAAS 603.5 Diaper Changing Tables.** Diaper changing tables are accessible to a user in a wheelchair. The top of the changing station is between 2’-4” and 2’-10” (28” and 34”) above the floor, with 2’-3” (27”) minimum knee clearance space under the surface. Clear floor space is provided at changing station, 2’-4” by 4’-4” (30” by 52”) for new facilities or 2’-6” by 4’ (30” by 48”) for existing facilities from a forward approach with a 2% maximum slope in any direction on a stable, firm, and slip resistant surface.
• **Best practice, ICC ANSI 603.6 Operable Parts.** Operable parts on towel dispensers and hand dryers serving accessible lavatories are operable with one hand and do not require tight grasping, pinching, or twisting of the wrist. The force required to activate operable parts is 5 pounds maximum. Reach ranges comply with Table 603.6.

• **ABAAS 606.2 Clear Floor Space.** A clear floor space is provided at lavatories and sinks, 2’-6” by 4’ (30” by 48”) minimum from a forward approach, with 2’–3” (27”) minimum knee clearance and 9” toe clearance.

 » **Best practice, ICC ANSI 606.2 Clear Floor Space.** A clear floor space is provided at lavatories and sinks, 2’–6” by 4’ (30” by 48”) minimum for existing facilities or 2’–6” by 4’-4” (30” by 52”) minimum for new facilities from a forward approach, with 2’–3” (27”) minimum knee clearance and 9” toe clearance.

 » **EXCEPTION:** No more than one bowl of a multi-bowl sink is required to provide accessible knee and toe clearance.

• **ABAAS 606.3 Height.** Lavatories and sinks have rims 2’-10” (34”) maximum above the finished floor.

• **ABAAS 606.4 Faucets.** Controls for faucets are operable with one hand without tight grasping, pinching, or twisting of the wrist, and operable with no more than 5 pounds of force. Hand-operated metering faucets remain open for 10 seconds minimum.

 » **EXCEPTION:** Automatic faucets are not required to comply with section 309 provided that the reach depth to activate the faucets and the reach depth to the water flow is 11” maximum.

• **Best practice, ICC ANSI 606.5 Lavatories with enhanced reach range.** Where enhanced reach range is required at lavatories, faucets and soap dispenser controls have a reach depth of 11” maximum. Water and soap outlets are provided with a reach depth of 11” maximum. The lavatory is 2’–10” (34”) maximum above the finished floor, measured to the higher of the rim or counter surface.

 » **EXCEPTIONS:** Enhanced reach range faucets and soap dispensers are not required on lavatories provided with automatic faucets and dispensers where the reach depth to activate them is 11” maximum.

• **ABAAS 606.6 Exposed Pipes and Surfaces.** Water supply and drainpipes under lavatories and sinks are insulated or otherwise configured to protect against contact. There are no sharp or abrasive surfaces underneath lavatories and sinks.

• **ABAAS 604.2 Location and 604.9.1 Location.** The water closet in wheelchair compartments and ambulatory compartments has a wall or partition to the rear and to one side. The centerline of the toilet is between 1’–4” and 1’–6” (16” and 18”) from the side wall or partition, except in ambulatory toilet compartments where it is between 1’–5” and 1’–7” (17” and 19”) from the side wall or partition.
• **ABAAS 604.3.1 Clearance Width and 604.3.2 Clearance Depth.** Clearance around the water closet is 5’ (60”) minimum measured perpendicular from the side wall and 4’–8” (56”) minimum measured perpendicular from the rear wall.

• **ABAAS 604.3.3 Clearance Overlap.** The required clearance around the toilet is permitted to overlap the toilet, grab bars, dispensers, coat hooks, shelves, accessible routes, clear floor space, turning space, and clearances required at other fixtures. No other fixtures or obstructions are located within the required water closet clearance. See figure 604.3.

• **ABAAS 604.4 Height.** The seat height of the toilet is between 1’–5” and 1’–7” (17” and 19”) measured to the top of the seat.

• **ABAAS 604.5 Grab Bars.** Grab bars for water closets are accessible and provided on the side wall closest to the toilet and on the rear wall.

• **ABAAS 604.5.1.1 Side Wall Horizontal Grab Bar.** The side wall horizontal grab bar is 3’–6” (42”) long minimum, located 1’ (12”) maximum from the rear wall and extending 4’–8” (54”) minimum from the rear wall.

• Best practice, ICC ANSI 604.5.1.2 Side Wall Vertical Grab Bar. The side wall vertical grab bar is 1’–6” (18”) long minimum, with the bottom of the bar located between 3’–3” and 3’–5” (39” and 41”) above the floor, and with the center line of the bar located between 3’–3” and 3’–5” (39” and 41”) from the rear wall.

• **ABAAS 604.5.2 Rear Wall.** The rear wall grab bar is 3’ (36”) long minimum, located 6” maximum from the side wall, and extends 3’–6” (42”) minimum from the side wall.

 » EXCEPTION: The rear grab bar is permitted to be 2’ (24”) long minimum, centered on the toilet, where wall space does not permit a length of 3’ (36”) minimum due to the location of a recessed fixture adjacent to the toilet.

• **ABAAS 604.6 Flush Controls.** Flush controls are hand-operated or automatic and located between 1’–3” and 4’ (15” and 48”) above the floor. They are located on the open side of the water closet except in ambulatory accessible compartments where they can be located on either side of the water closet.

• **ABAAS 604.7 Dispensers.** Toilet paper dispensers are operable with one hand. Where the dispenser is located above the grab bar, the outlet of the dispenser shall be located between 2’ and 3’ (24” and 36”) from the rear wall. Where the dispenser is located below the grab bar, the outlet of the dispenser is between 1’–6” and 4’ (18” and 48”) above the floor.

 » EXCEPTION: Toilet paper dispensers that accommodate a maximum of two toilet paper rolls of not more than 5-inch diameter each are permitted to be located between 7” and 9” in front of the of the water closet measured to the centerline of the dispenser. Toilet paper dispenser must not interfere with use of the grab bar.

Sustainability

Design comfort stations with sustainability in mind and incorporate any and all feasible measures to reduce the footprint to the natural environment (figure 3.89). The orientation of the windows can help reduce the need for electricity.

If the comfort station has lighting, solar panels can be used, and ensure they are properly oriented for maximum solar gain. To conserve water, consider integrating the following into the comfort station design: low-flush toilets, low-pressure sinks, and water-saving showerheads.
Flush Toilets

Where feasible, flush toilets are preferred by visitors. Flush toilets can handle a large number of visitors and are best suited for high-use and developed campgrounds. Unlike vault and pit toilets, flush toilets do not emit odors. Flush toilets comfort stations are more expensive because they have the most infrastructure, require drinking water and septic or sewer systems. If existing flush toilets are in place and the wastewater system allows, consider maintaining the same existing infrastructure throughout the campground.

Interior. Flush toilet comfort stations will contain the most interior amenities of all types of comfort stations. Showers and laundry facilities are not often included; however, Investment and Management Tools can assist parks in making the decision to include these features. Amenities that are typically included in flush toilet comfort stations include:

- Toilets (low-volume flush)
- Sink
- Mirror
- Electric outlet (AFCI per codes)
- Soap dispenser
- Hand dryer
- Shelf or countertop for placing personal items
- Hooks for hanging personal items
- **Lighting** (to supplement daylight through windows)
- Waste receptacle
- **Dish-washing sinks** – located on building exterior
- Hot Water (in some situations)
- Heating (in some situations)
- **Showers** (in some situations)

Exterior. Flush toilet comfort stations frequently include an exterior **dishwashing** or utility sink, a water hydrant for drinking water, and sometimes a bottle filling station.

Mission 66 Comfort Stations

While high-profile buildings, such as Mission 66-era visitor centers, are more clearly recognized for their contribution to the period. Smaller buildings, like comfort stations, are more numerous and may also contribute to the historic character of a park.

Given their function, comfort stations are not highly regarded, architecturally or culturally, and are particularly prone to renovation, presenting concerns about the gradual loss of integrity of these small, but distinctive buildings.
It is important to identify Mission 66 character defining features and elements such as massing, materials, and window position, and develop design and maintenance guidelines. Developed guidelines are intended to direct and shape the efforts of planners, architects, and maintenance personnel as they work on future renovations in order to protect the comfort stations’ Mission 66 character (Design and Maintenance Guidelines, Mission 66 Comfort Stations, National Capital Region). Mission 66 comfort stations were designed within a site context. Campgrounds with Mission 66 comfort stations should receive an evaluation of cultural landscape resources (figure 3.90). See National Capital Region Mission 66 Comfort Stations Design and Maintenance Guidelines and National Historic Preservation Act and Section 106 for more information.

Considerations for adapted historic comfort stations. There are many reasons to modify historic comfort stations including accessibility, usability, deferred maintenance and operations. It is important that comfort stations work for today’s users (figure 3.91).

Figure 3.90 Yellowstone National Park, Wyoming, Grant Village Campground Mission 66 comfort station.

There are three main approaches to alter historic comfort stations

1. Adapting existing comfort station
2. Expanding and adapting existing comfort station (rehabilitation)
3. Adding a new building adjacent to the existing comfort station

Mission 66 Layout

Revised Interior Layout with Accessible Features

Figure 3.91 To upgrade the Mission 66 comfort station at Tuolumne Campground in Yosemite, stalls and fixtures need to be removed to meet accessibility requirements. See demolition versus proposed accessibility plans above.
To guide design changes:

- Look for common character defining features in the comfort stations.
- Identify common thread of architectural features.
- Look at the site in relationship to the building, as well as the building itself.
- Historic comfort stations were subservient to the landscape.
- List key areas to use to guide new design, such as:
 » siting and relationship to topography
 » topography to roof line (height and pitch)
 » materials (should be compatible in color, texture, etc.)

Vault Toilets

A vault toilet is a waterless toilet used over a sealed underground tank. These types of toilets are frequently used where wastewater systems are either not available or not cost effective.

Site placement. Proper site placement of the vault is crucial, as improper placement will result in a malfunctioning vault toilet (figure 3.92). Place vault toilets at least 100 feet away from water supply and five feet above the water table. These units require waste removal using a pump truck, which means that vehicular access is required—usually less than 100 feet in distance. This can pose a challenge for siting units discreetly. The vault cleanout panels, also known as outside/through service chase, are generally located on the same side of the structure as the stacks (i.e., the rear), requiring good access to the rear for pumping.

Orientation of the vault should take advantage of both the wind flow and the sun’s energy to minimize the smell often associated with a vault toilet unit. Orient the unit for unobstructed solar heat gain to the vent pipe to provide the upward draw of air. Do not place the vault toilet unit in a hollow, beneath an overhang, on the lee side of a ridge, immediately adjacent to a dense tree line, or in dense brush and/or trees. It is important to avoid placing two, single-unit or two, two-unit toilet buildings close together and in line with the wind.

For detailed information on the siting refer to the USDA Forest Service Tech Tip, SST Installation Guide (0323-1303P-SDTDC).

Figure 3.92 Vault toilet site placement.
Siting vault toilets can be challenging for campground design as these types of comfort stations need to be out in the open and therefore make a greater visual impact than that of historic (Rustic or Mission 66) comfort stations (figure 3.93).

The USDA Forest Service Tech Tip, SST Installation Guide (0323–1303P–SDTDC), is intended to reacquaint engineers, architects, and others with the basic principles of SST technology.

Ratios and distances. In a loop campsite design, ensure there is a minimum of one comfort station per loop or a recommended 250 to 500 feet distance from the farthest accessible campsite. (figure 3.94) An inclusive campground aims to provide all campsites to within roughly this distance, realizing that this is not always achievable. Evaluate the number of comfort stations and their distances to a reasonable amount within a short walking distance. Locate the number of fixtures (unisex) to serve approximately seven sites. This is based on an average of five persons occupying each campsite. The use of unisex facilities has increased over time and is often preferred by visitors with disabilities.

Separated unisex comfort stations are encouraged in many situations. Unisex comfort stations provide more flexibility for campers and maintenance professionals.

Figure 3.93 Mammoth Cave National Park, Kentucky, Maple Springs vault toilet.

Figure 3.94 Diagram demonstrating distances for vault toilet installation. USDA Forest Service, Technology and Development Program. SST Installation Guide. 0323–1303. May 2003.
For example, unisex restrooms provide flexibility for family groups, allow family members to better assist users with varying abilities, are gender neutral, and provide separation from other campers.

An inclusive comfort station would consider the user group. In areas where a visitor preference is to squat, consider implementing squat toilets. Because of their uncommon use in the United States, these fixtures should be considered as an addition to the total number of toilet fixtures added to a comfort station and not part of the total.

Organic composting toilets are sometimes used where service access for pumping is difficult or unfeasible. (figure 3.95) However, composting is not recommended unless there is dedicated staff to operate and maintain the facilities. Locate composting toilets in only warm, dry locations where composting is likely to be successful. Most of the public composting toilets in the National Park Service have not worked as desired.

O&M - Vault Toilets:

- A concrete vault is the preferred material choice. Polyethylene vaults crack over time and need frequent replacement.
- Parks with “dynamic” environments may consider pre-cast, easy to install units. For example, a coastal park can move these units more easily if area is damaged by a storm and the visitor use area changes.
- A standard concrete vault holds up to 1,000 gallons of waste. Consider the PAOT and the average volume of waste generated to determine how frequently the vault will require pumping. Roughly 400 uses equate to about 100 gallons of waste. A vault will require pumping when it is roughly 80 percent full.
- To reduce refuse inside the vaults, place a trash can inside of the comfort station. Be mindful of trash can placement, as it may hinder ABAAS 1011.2.1 compliance for clear floor space.
- In parks with bears, signs to close the door may be required, as the inside of vault toilets often attract wildlife.
- Screens can be added to the top of the vault pipe to prohibit birds (including owls) and bats from entering the pipe. More information on a potential product can be found here.
- Because vault toilets are generally used in more primitive areas, a gravel surface often surrounds the vault. To maintain ABAAS 303, changes in level, fill will be required on a frequent basis to maintain the vertical standard. A hardened approach (concrete, asphalt, etc.) is preferable to increase accessibility and minimize maintenance.
- As a best practice, include hand sanitizer and dispenser near the door on the inside of the unit.
Materials. Make prefabricated vault toilet buildings out of concrete or masonry (figure 3.96). If located in a very hot climate, insulate the roof to ensure the proper air currents and functioning of vault ventilation.

Interior. Make all interior vault surfaces out of concrete and seal them to prevent leaking and absorption of odors into the material used to construct the vault. Completely seal the floor and upper three to four inches of the side to prevent staining and odor absorption and ensure they have a non-slip surface and are sloped two percent from the back to the front door to facilitate proper drainage and easier cleaning of the facility. Round the corners in the vault to facilitate cleaning as well. Make sure the interior walls are nonporous, light in color, and made of material that is easy to clean. Ensure walls are free from ledges, angels, and shelves to prevent dirt accumulation. Insulate the ceiling to prevent sun-heating via the roof.

Toilet specifications. The typical vault is approximately 1,000 gallons. Vault depth is recommended not to exceed five feet to ease pumping, via an exterior cleanout. Vaults may be deeper in colder climates where a greater volume of waste is created and pumping cannot occur as regularly because of freezing during the winter season.

The vault itself should have a black interior to prevent the visitor from seeing waste when looking down the toilet riser. Do not use bituminous materials for coating the vault because that material is food for bacteria. The vault should have a bottom slope of 11 inches per foot from under the toilet riser out to the outside cleanout area so that waste can be more thoroughly removed.

Make certain the toilet riser is free of cracks and crevices to prevent odorous materials from collecting. The riser should have a heavy-duty open front seat and cover assembly that does not seal the air out. Ensure the riser is easy to clean and impervious to oxidizing cleaning agents.

Ventilation. Install one vent opening in the vault building, with the opening placed on one side of the building (side, front, or back). Locate the vent to be “head-high” on the building if there is a constant prevailing wind hitting that side. For shifting winds, place the vent as low to the ground as possible and on the side that the wind is most predominant during the use period. If there is an up-canyon wind in the morning and a down-canyon wind during the afternoon, then place the vent on an adjacent wall surface as low to the ground as possible so that the wind has the least effect of aspirating air out of the building.

Construct the vent of a heavy-duty material, such as expanded metal, to prevent vandalism. Make sure the vent is around 120 square inches and 12 inches in diameter for one single unit toilet.

Ensure the top of the vent pipe is at least three feet above the highest point of the roof, and paint the 12-inch diameter pipe a dark color to promote convection from the sun. The top of the vent pipe should remain unobstructed, but a screen to keep wildlife out is recommended to promote proper ventilation upwards.
Exterior. Unique to vault toilets, the exterior should have a 24-inch diameter (minimum) lightweight cleanout cover installed to the rear or side of the building. The cleanout cover must be sealed to prevent air and water from entering the vault and secured to prevent unauthorized entry. Ensure the cleanout cover is raised, with the surrounding concrete sloped away using a minimum slope of 1/2 inch per foot. In addition, slope the exterior walkway to the vault to drain away from the building at a slope not to exceed two percent.

Accessibility.
- Refer to [Comfort Station](#) accessibility codes.

Dishwashing Stations

Flush toilet comfort stations frequently include a dishwashing or utility sink (figure 3.97). In general, if sinks with running water are included inside of the comfort station, then provide a separate dish-washing sink provided; otherwise, visitors will use the hand washing sink for dishwashing. Dishwashing stations also eliminate visitors dumping greywater in undesirable places. Common considerations include a grease trap for the sink, overall sink maintenance, bear and other animal considerations (leftover food particles), and accessibility in small closed-door areas.

Ratios and distance. Provide roughly one dish washing sink per flush comfort station. Dish washing / water hydrant areas may be provided in less developed campgrounds. Be sure to provide a proper drain and signs detailing no food waste.

Accessibility.
- ABAAS 606 Lavatories and Sinks
- ABAAS 804 Kitchens

![Figure 3.97](image) The outdoor dish washing sinks at Glacier Basin campground in Rocky Mountain National Park are integrated on the comfort station exteriors and provide a firm and stable surface and knee clearance for accessibility.
Electrical Services

The determination to include utility hookups depends on a variety of factors, including the demand for RV hookups at the site, campground location and size, availability of commercial campgrounds in the area, and the cost of installing and maintaining the services and utilities. See “Investment and Management Tools” for more information. Campsites designed for RVs should provide electrical services in a covered and grounded electrical box mounted to a post or in a manufactured assembly that includes a ground fault interrupter (figure 3.98).

In addition to RV hookups, consider charging stations for personal devices. These can be located at comfort stations, fee stations, or individual campsites including walk-in sites. When determining total electrical load, account for electrical draws such as water pumps and building usage.

Distance and ratio recommendations. Utility services will be mounted to a post or as part of a manufactured assembly, and the guard post will be four to five inches in diameter and filled with concrete. Pedestals should provide electrical service according to the National Fire Protection Association, National Electric Code—latest edition. Many RV campers require one 50-amp and one 20-amp 120 volt GFCI protected outlet (figure 3.99). Locate pedestals on the driver side of the parking pad approximately 15 feet from the rear of the pad, protected by a steel guard post located 18 to 24 inches away.

Design considerations. Place buried utility services under road and path routes wherever possible to minimize disturbance of the surrounding vegetation. Ensure power is underground in all use areas, with warning tape placed in the trench above electric lines so that it can be located for future digging operations. Electrical facilities at each campsite need to be sized to comply with local building codes and National Electrical Code, Section 551. It is important to develop tamper-proof electrical power to avoid

Figure 3.98 Electrical camp site panel with 30-amp and 50-amp connections. Consider locking bottom portion of panel to prevent tampering with electrical capacity.

Figure 3.99 Many camper slide outs are located on the same side as the utility hookups. For this reason, additional protection is needed to prevent a camper for inadvertently damaging utilities.
amp issues and capacity tripping when adapters are used to pull additional power. It has become a problem in some parks that offer electrical hookups; users are employing adapters to pull more power than designed for. This is a fire hazard and can have dangerous implications and cause tripped breakers. This is not a safe practice under NFPA 70 article 551.

Where electrical hookups are provided, generator use can be reduced or eliminated. Generator use can negatively impact the experience of campers that do not use generators (figure 3.100). Locate sites allowing generator use in a separate area to eliminate impact to visitors (figure 3.101). Increasing the availability of electricity at campsites is also encouraged for inclusivity of people with disabilities. Visitors may need to recharge powered mobility devices or require a power source for use with breathing apparatus during the night. Make sure these visitors are able to disperse throughout the campground and not always be forced into camping in highly developed areas.

Accessibility. An electrical connection at a RV Trailer accessible site shall have a minimum 30-inch by 60-inch accessible clear space adjacent to, and centered on, the post. Locate the space so that the hookups are at the rear center of the space. The long side of the clear space must adjoin or overlap an accessible parking space or pull-up space for recreational vehicles. Bollards or other barriers shall not obstruct the clear space required in front of the hookups (ABAAS 1011.2.1).

![Figure 3.100](image1.png) Directional sign showing a generator-free loop.

![Figure 3.101](image2.png) Big Bend National Park, Texas, Chisos Basin Campground, Campground Map clearly indicates generator-free area.
Lighting

Lighting can be installed both indoors and outdoors to enhance the visitors’ experience and improve safety at campsites. Lighting design must consider local, state and federal codes, and the intentional preservation of naturally dark night sky. Consider warmer colors in the higher end of the spectrum (yellow, orange, red) to reduce attracting insects, preserve human night vision, and provide additional night sky protection. Balance the preservation of naturally dark night skies with designing for safety, acknowledging that adequate lighting is essential to ensuring that people from urban and metro areas feel safe in campgrounds.

Indoor Lighting. Ensure the lighting within campsite facilities, such as comfort stations, is adequate for the visitor to function safely, without providing high-intensity light. For example, use natural lighting for bathroom and showers that is supplemented with either motion-activated or switch-activated artificial lighting for evening use. If windows are present, shielding should be used to prevent light pollution. Interior lighting should not impact the outside environment.

Outdoor Lighting. Use low intensity lighting within a campground and provide illumination only where necessary for safety. Outside of comfort stations, lighting may be used to illuminate the external sidewalks, nearby ground surfaces, and amphitheaters as needed. Consider adding an automatic shut off to turn off the light during late night hours. More guidance can be found through the [International Dark Sky Association (IDA)](https://www.darksky.org/).

Best Practices for Preserving Naturally Dark Night Skies

Naturally dark night skies are an integral experience at campsites and must be actively preserved through intentional lighting design (figures 3.102 and 3.103). All indoor and outdoor lighting should integrate the following best practices for preserving dark night skies:

1. **Avoidance**
 a. Light only when required for safety of visitors and staff, to the extent practicable.
 b. Maximize distances of lighting from sensitive areas.
 c. Encourage visitors to minimize personal outdoor lighting.

2. **Screen**
 a. Use physical barriers and existing terrain to reduce light trespass.

3. **Direction and Shielding**
 a. Mount lights and direct downward.
 b. Use partial shields and limit up-tilt.

4. **Adjust Duty Cycle**
 a. Use motion sensor controls in infrequently used areas.
 b. Use timers to control lighting only during night hours of typical use.

5. **Brightness**
 a. Use only the lowest light intensities necessary for the task.

6. **Color and Spectrum**
 a. Use amber light when color rendering is not critical.
 b. Limit light to 3000-degree Kelvin when color rendering is critical.
 c. Avoid blue/white light spectrum when possible.
Figure 3.102 Captions ordered left to right, top to bottom: Rustic wood frame lighting post at Yosemite National Park campsite; Wedge bollard light to brighten walkways at Yosemite National Park; Sky guard lighting fixture at Yellowstone National Park; Light on A-frame structure at Yellowstone National Park; Industrial shaded light at Yosemite National Park; Tall light posts at Grand Canyon National Park’s Historic District.

Figure 3.103 Milky Way over Spatter Cones at Craters of the Moon National Park.
Telecommunications

The prioritization of the telecommunications at a campground is specific to the individual campground and can vary within a single park. In general, consider the following priority:

1. Install internet lines to the campground entry or a central kiosk or gathering place. This would allow installation of limited Internet or Wi-Fi and allow payment by phone.

2. Cellular phone access can be a critical accessibility tool for many types of disabilities. In most instances, cellular service is the highest priority telecommunication service for visitors.

3. Consider where else it is appropriate and/or feasible to provide wireless internet access, to facilitate visitors’ trip planning, communications with other parties and access to park educational and interpretive content. The industry trends report indicates that Wi-Fi is of low priority for campground visitors in national parks. However, this survey focused on visitors who already were camping in national parks and did not survey non-NPS campers and their value for of Wi-Fi in a campground. Wi-Fi service may be provided through a third party for a fee, be an added fee through an existing concessioner, or be included in the site fee as a campground amenity.

4. Additional telecommunications services to consider in campground design include satellite and cable. In general, bury telecommunication lines underground and follow the road and path alignments. If possible, combine utilities in one trench. Provide accessible telephone or emergency call box service in public use areas where no service is provided, and make certain at least one telephone or call box allow for emergency calls to be made without coins. Use international symbol signs to denote phone or call box locations. Ensure call box locations are accompanied by adequate parking, lighting, and shelter from the elements. Make sure phone service through visitors’ cellular device carriers is available at all entrance stations and maintenance facilities if feasible.

Amphitheater

The amphitheater has a long history in NPS campgrounds. Beginning in the late 1920s the amphitheater emerged in NPS campgrounds. The design of the facility drew from the traditions of rustic architecture and naturalistic gardening. By 1932, the amphitheater had become an important and regular feature of park campgrounds where evening ranger talks could be heard (McClelland 1998, p. 251).

These landscape features are somewhat unique to NPS campgrounds. They provide an opportunity to connect with visitors and support the educational branch of National Park Service. The importance and legacy of a NPS amphitheater cannot be understated and should be considered in the modern NPS campground. (figure 3.104)
Amphitheaters are an important facility in campgrounds. However, before designing a new amphitheater or renovating an existing one, consider both the programming and source of visitors. The most successful amphitheaters have strong programs that run daily/nightly and draw visitors from the campgrounds and nearby overnight stays. Programming should be inclusive in historic and cultural content and draw visitors from a diversity of backgrounds. If campground interpretive programming intends to draw a smaller crowd, consider designing a campfire circle as an alternative to an amphitheater. Additionally, consider an adaptable amphitheater such as a flat area with no benches that can be used as picnic area or provide Wi-Fi service within the area to promote use during times without programming.

Siting

Amphitheaters should blend into the natural landscape (figure 3.105). Natural hollows or graded bowls are traditionally used to create an enclosed area within the landscape. The National Park Service has a history of siting these facilities in locations that blend in with the surrounding and appear as though they have always been there. Trees and other natural screens should be used to minimize sound and light disturbances as well as create a more intimate space. Slopes should carefully integrate accessible routes and landings throughout the site to allow for a range of participation by users of all abilities and not limit participation to flat areas only located in the back or front. This also effects those who accompany individuals with disabilities such as children or companions. Depending on the topography of the site and interpretive programming, it may be necessary to provide pathways and exterior lighting to help orient visitors to the amphitheater. Use energy-efficient and shielded lights with warm colors to preserve the naturally dark night sky experience (see “Best Practices for Preserving Naturally Dark Night Skies” for more information).

Materials and Details. Wood, stone and other natural materials help features blend into the environment (figure 3.106). Consider maintenance of materials and overall long-term wear.

Accessibility. Ramps, rails, and accessible seating should be included in all amphitheaters (figures 3.107 and 3.108). It is important to provide a variety of seating, including seats with backs and without
backs, seating with and without armrests, and companion seating. If seating is permanent, include a variety of locations throughout the space for people using wheelchairs. Amphitheater settings should be equipped to provide assistive listening for live presentations, programs, and videos. Captions should be displayed on screens. Be sure to design accessible paths and parking to the amphitheater as well.

See appropriate accessibility links below:

- ABAAS F221 Assembly Areas
- ABAAS 802 Wheelchair Spaces, Companion Seats, and Designated Aisle Seats

![Figure 3.106 Hot Springs National Park, Arkansas, Gulpha Gorge Campground Amphitheatre.](image)

![Figure 3.107 A “before image” of Moraine Park Amphitheater. The amphitheater was developed in the 1950s, had out-of-date technology and inaccessible seating areas. (Rocky Mountain National Park)](image)

![Figure 3.108 The “after” image of the same amphitheater updated technology and provides accessibility to 50% of seating, including 10 wheelchair spaces integrated throughout. Seating includes benches with and without backs to enhance comfort and usability for all visitors.](image)

Solid Waste and Recycling Management

Campgrounds are operated by both the National Park Service and concessioners. When a campground is operated by a concessioner, collaboration on waste management and recycling is the key to reducing waste. Parks must also work closely with their municipal waste handler to know what recycling is accepted.

Dumpsters are more economical than individual trash cans because of capacity and ease of collection (figure 3.109). However, garbage dumpsters require a larger area that is accessible by a garbage truck to mechanically lift and tip the dumpster. Dumpsters must also be strategically designed into the overall campground plan and placed at a reasonable distance...
away from campers. Garbage dumpsters should include screening via fences or walls matching the campgrounds' architectural style. If using dumpsters for both trash and recycling collection, consider a design that has an opening at the same height and configuration as the recycle bins. This will make it easier for the visitor to sort while also being accessible.

O&M - Recycling

• Consider having propane exchange programs in the campgrounds. One-pound propane cylinder disposal is an enormous problem in the national parks. Although these cylinders can be purchased by the camper for approximately $5, the empty container left at the park can cost $20 or more for each one to be disposed of properly. Program management could be by park staff, campground hosts, or concessioners.

• During peak visitation periods, tri-bins may need to be emptied every other day. Some parks may need to consider larger bins or have multiple bins/ compartments for each commodity. Consider the appropriate size and number based on visitation and staff availability.

• A trailer could be used to collect additional plastic, tin, newspaper, cardboard, etc. at the main recycling hub. There will be more plastic #2 in campgrounds because of bigger water containers, which take up a lot of space in plastic recycling bins.

• The design and maintenance of trash receptacles should prevent access or disturbance by wildlife. Reduce waste and operations costs by encouraging visitors to pack out their trash. For remote campsites, consider a “pack it in, pack it out” policy to reduce operational costs of trash and recycling pickup. Campers at remote sites can be directed to a central collection location.

Figure 3.109 (A)(B)(C) Trash and recycling options.
Leave No Trace Study, 2019

Convenience is key to a successful recycling program. A Leave No Trace (LNT) study in 2019 cited reasons campers found recycling to be easy in parks included: availability of receptacles; easy to understand signage; and receptacles that were within proximity of campsites, respectively.

To promote recycling, pair recycling and trash containers. Matched recycling and trash containers are more appealing than dumpsters and results in less contamination in the recycling. However, individual trash containers are more labor intensive for staff to maintain than dumpsters. Ensure recycle bins can be seen and are not hidden adjacent to larger dumpsters or other obstructions. As determined by the LNT study, more frequent recycling containers throughout campgrounds are recommended. Provide information on which commodities are accepted in each location. Label dumpsters or trash bins as “garbage” or “trash,” not “landfill.” For non-English speakers, the words “garbage” or “trash” are more commonly understood.

Green Waste and Waste Reduction Considerations

- Hand out bags that have a different color and label for recyclables and trash.
- Some parks may have the ability to compost, and compost collection could be accomplished in campgrounds, with proper planning and maintenance.
- To reduce waste, make sure to label all drinking water sources as “drinking water” or “potable water.” Visitors are reluctant to fill water containers in picnic areas and campgrounds if the source is not identified as drinking water. It is also helpful to have two hydrants: one that is good for filling a large container and one at which it is easy to fill a small water bottle (less pressure).

Ratios and distances. Trash cans should be located by loop entrances or intersections, away from water hydrants. The number of trash cans will depend on the campground layout and the availability of pickup services at that site. Number and size of cans should range anywhere from one can per three campsites to one can per loop (up to 40 campsites). Trash cans should be located a maximum of 100 ft away from campsites. Each campground should also have a centralized dumpster containing trash cans and other waste collection (including recycling, if available). This dumpster area should be approximately 12 ft x 6 ft x 6 ft in dimension. Accessible routes should be provided to collection cans and dumpster facilities.

Accessibility. At least 20 percent of all trash receptacles must be accessible (a minimum of two where more than one is provided), with a minimum clear space of three feet by four feet for a forward approach or 36 inches by 60 inches for a parallel approach to the receptacle opening. The surface of the clear space must be firm and stable (i.e., resists deformation by indentation). If the surface is concrete, asphalt, or boards, the clear ground space slope should be no more than two percent slope in any direction. If the surface is other than concrete, asphalt, or boards, then the clear ground space slope can increase up to three percent in any direction if needed for drainage. All accessible trash receptacles must be within a 15-inch to 48-inch reach range. Accessible trash areas should be located adjacent to accessible campsites. See ABAAS 1011 Outdoor Constructed Features for more on accessible trash receptacles. (figure 3.110)

In bear country, trash and recycling containers must be designed to keep the bears out, minimizing contact between bears and humans. Bear-resistant receptacles require more force than is allowed for accessible operation, and currently there is no bear-resistant accessible receptacle design. Therefore, these receptacles are exempt from the accessibility standards for reach range and operable parts, but all other requirements for clear space and surface condition must be met to the maximum extent possible.
When accessible bear-proof receptacles are designed and available, there will no longer be an exemption. Dumpsters are likewise exempted from accessibility guidelines. All other accessibility requirements (such as route and slope) must be met even if the operational force requirement cannot be met.

Design considerations. When permissible and available by local jurisdiction and pickup, recycling should be included at all campgrounds. When including recycling in design, consider amenities to facilitate separation of recyclable materials from other waste. Trash cans should be washed and/or disinfected regularly. The concrete pad under the dumpster should be designed for a large dump truck, which often requires six inch reinforced concrete. The back of the dumpster requires a curb or curb stop so that when the dumpster is being picked up by the garbage truck, there is something to push it against. Lastly, wheels on dumpsters are not desirable as the dumpsters often get moved by campers.

Dog waste. Include amenities for pet waste at sites with high concentrations of pet use. If canine waste is an issue, consider providing doggie doo bags along with information on rules for dogs (e.g., dogs are not allowed on trails, in lake, etc.). Ensure dispensers are within the reach ranges specified in ABAAS, are on a compliant accessible route, and have the required clear space for both a front and side approach.

Picnic Table at Campsite

Picnic tables are frequently provided as a convenience at campsites and are likely to be used if provided (figure 3.111). Picnic tables are typically located within one campsite, along with a **fire ring**, tent pad, and connections to hookups (water, electrical, sewer) if they are included. Given space considerations, consider designing campsite picnic tables to be large enough to accommodate diverse recreational users who are more likely to visit campsites with extended family and friends.

Figure 3.110 Accessible dumpster with dimensions.

Figure 3.111 Accessible picnic table at Hawaii Volcanoes National Park, Hawaii, Kulanaokuaiki Campground.
Materials. Build picnic tables from durable materials, including wood, metal, concrete, or a combination of these. Ensure picnic tables are a minimum length of eight feet and should always incorporate accessibility design guidelines. Picnic tables in light color will stay cooler in sunny areas; in cooler areas, dark colored tables are preferred to avoid visual clutter.

O&M - Picnic Tables

- Maintenance and operations are easier if the same picnic table style is used throughout the park. This allows parks to know what to order for replacement.
- Build picnic tables from durable materials, including wood or metal or a combination of these.
- Concrete picnic tables, while durable, often require heavy equipment to place and remove.

Accessibility. All new picnic table installations must comply with requirements for accessible seating spaces, table clearance, slope, and surface (figures 3.112 and 3.113). This is true whether the table is in a campground, picnic area, or other recreation site. Picnic table accessibility is required even if the individual campsite is not specifically designated as accessible.

Provide a variety of wheelchair-seating locations at each picnic table (i.e., end, center, or side access). The number of wheelchair seating spaces that must be provided at each table is based on each 24 linear feet of usable table surface perimeter.

The standard picnic table of eight feet in length should have at least one wheelchair space.

Knee space for wheelchair seating must be at least 30 inches wide, 19 inches deep, and 27 inches high, as measured from the finished ground or floor to the bottom of the tabletop measured to the lowest part of the tabletop, including any brackets, fixtures or bolts, which will impact the use of the accessible space. Toe clearance of at least nine inches above the ground or floor must extend at least an additional five inches beyond the required knee clearance. Toe clearance is required to ensure that someone in a wheelchair is able to sit close to the tabletop, regardless of the design of the picnic table. For example, if the table is constructed with one solid leg on each end, as opposed to an A-shaped frame or two individual legs on each end of the table, someone in a wheelchair will not be able to sit comfortably at the table.

In addition to providing clearance at the table, clear floor or ground space must be provided. The clear ground space must be at least 30 inches by 48 inches at each wheelchair seating space (ABAAS 1011), or as a best practice, 30 inches by 52 inches (ANSI 305.3.1). The clear ground space must be positioned to accommodate a forward approach to the table. No exceptions to the wheelchair seating space requirements are permitted. A perimeter of clear floor space must also be provided around the usable portions of the table, measuring 36 inches in width minimum (ABAAS 1011), or as a best practice, 48 inches in width (ANSI 403.5.1), to allow for movement around the table.
The slope of the required clear floor or ground space for wheelchair seating spaces and for table clearance may not exceed two percent in any direction. Slopes not steeper than three percent are permitted, however, where necessary for drainage on surfaces that are unpaved or not built with boards. The surface of the clear floor or ground space must be firm and stable. The type of surfacing used should be appropriate to the setting and level of development. Unpaved surfaces must be maintained so that they remain firm and stable to the maximum extent possible. This will require additional and ongoing maintenance.

Design Considerations

Campgrounds managers will need to decide if picnic tables should beanchored to the ground to prevent theft and relocation or if the tables should be movable to accommodate shade preferences. Attaching picnic tables with a tether allows for secure anchoring while also providing flexibility to the visitors. Allowing movement of a table, even with a tether, may negatively impact the clear accessible space surrounding the table and create a need for additional staff hours to relocate tables repeatedly.

Picnic Areas (Stand Alone)

Stand-alone picnic areas have been incorporated in National Park Service campgrounds since the 1920s. These areas provide a place for individuals and groups to relax and gather with family and friends in a location separate from individual campsites. The ideal picnic area is durable, requires low maintenance, and is environmentally sensitive. Pairing picnic areas with shade structures allows for visitors to enjoy the picnic sites with sun cover and protection from precipitation. Consider designing campsite picnic tables to be large enough to accommodate diverse recreational users who are more likely to visit campsites with extended family and friends.

Distance and Ratios. Ensure picnic areas are accompanied by a cooking surface or grill attached to a **fire ring** and a toilet facility. In addition, design picnic areas close to parking, ideally within 300 feet of the parking area. Size the picnic to meet the needs of the specific campground and its anticipated level of use. This could range from a high density of 150 picnic sites per acre to a low density of 50 picnic sites per acre and is dependent on the individual campground character and amount of use.

Group Picnic Sites

Land management agencies have experienced an increase of recreation occurring in large groups, especially among diverse communities who are more likely to recreate with extended family and friends (figure 3.114). Consider whether a group picnic site would be appropriate for the campground to accommodate large groups of visitors recreating together. Group picnic sites are more formalized that stand-alone sites described above and should incorporate large covered group shelters (where feasible), large picnic tables, and large grills. If **fire rings** are provided, consider a larger fire ring rather than several smaller fire rings. Group sites should also provide accessible features.
Accessibility for stand-alone and group picnic sites. Wherever possible, picnic sites should exceed the minimum number of required accessible picnic tables (figure 3.115). Having one style of picnic table reduces maintenance; it also reduces management needs by preventing the need to move visitors from accessible picnic tables when visitors with disabilities need access. Many visitors prefer using accessible picnic tables with extended tops because this is an easy location to place coolers and picnic supplies. Make sure to disperse accessible picnic sites throughout the area at several locations to allow individual choice. This includes providing picnic sites under trees or shade shelters, in sun, near water, with preferred sight lines, etc. Locate the accessible sites near other accessible features in the area, including parking spaces (within 150 feet), comfort stations, water hydrants, etc. However, do not limit accessible picnic sites to only those closest to parking and comfort stations; some people with disabilities want the privacy afforded by locations farther from the parking lot. Distances can be from 200 to 500 feet from parking lot to picnic tables overall. See “Facility Distances to Campsite” for more information. Accessible picnic sites should include all features offered within other picnic sites.

For picnic areas with two or fewer picnic sites, ensure each site is accessible. For picnic areas with more than two picnic sites, at least 20 percent of sites should be accessible, and these sites should be dispersed throughout the area. Accessibility requirements must be met for all altered sites.

For larger tables, one wheelchair seating space is required for each 24 linear feet of usable space around the perimeter of the table. Practically speaking, tables up to nine feet (2.74 meters) long usually require one space. Tables between 10 feet (3.05 meters) and 20 feet (6 meters) long usually require two wheelchair spaces, and so on for longer tables, such as four spaces for tables that are 40 feet (12 meters) long.

Provide a variety of wheelchair-seating locations at each accessible picnic table (e.g., end, center, or side access). One wheelchair seating space must be provided for each 24 linear feet of usable table surface perimeter. All accessible picnic tables require a minimum of 36 inches clear space on all usable sides (measured from the back edge of the bench (ABAAS 1011), or as a best practice, 48 inches clear space on all usable sides (ANSI 403.5.1). Each wheelchair space needs to be 30 inches wide by 48 inches deep minimum (ABAAS 1011), or as a best practice 30 inches by 52 inches (ANSI 305.3.1) and positioned for forward approach and meet knee and toe clearance requirements. Ensure each accessible picnic table is fixed to the ground to keep it from being moved into an inaccessible location. If a center-cut or side-cut table is used, paint a warning on the ground or around the edges of the cut surface in a color that sharply contrasts with the surrounding surface to alert persons with visual impairments that there is no bench seating in this location.

All clear maneuvering spaces should meet standards and guidelines for accessibility. The surface of the clear space must be firm and stable (i.e., resists deformation by indentation). If the surface is concrete, asphalt, or boards, ensure the clear ground space slope is no more than two percent. If the surface is other than concrete, asphalt, or boards, then the clear ground space slope can increase up to three percent in any direction if needed for drainage.
Fire Pits and Grills

Fire pits and grills increase the opportunity for visitors to cook food safely, increase protection from fire, and allow visitors to enjoy campfires in a controlled way.

Specifications. Provide a clear floor or ground space around all usable sides of a fire ring, grill, fireplace, or wood stove so that someone isn’t forced to get too close to the heat or fire and risk getting burned. The clear space must extend at least 48 inches out from the feature and be at least 48 inches wide (figure 3.116). In many cases, a 48-inch-wide ring of clear space must be provided all around because all sides are usable (ABAAS 1011).

Ensure the fire-building surface within a fire ring is a minimum of nine inches above the finished floor or ground surface. Make sure the cooking surface is between 15 and 34 inches high (ABAAS 1011). Ensure the width of the raised edge or wall around the fire is less than ten inches wide.

The slope of the clear floor or ground space must not exceed two percent in any direction. When the surface is unpaved or not built with boards, a slope of three percent or less is allowed where necessary for drainage. The surface of the clear floor or ground space must be firm and stable, and the surface material used should be appropriate to the setting and level of development.

Accessibility. Controls and operating mechanisms for fire rings, grills, fireplaces, and wood stoves must meet the requirements for reach ranges and operability specified in ABAAS 308 and ABAAS 309. Ensure that each cooking surface, grill, and pedestal grill meets the requirements for cooking surface height, clear floor or ground space, slope, and surface. The height requirements are based on the height for countertops and the minimum low forward reach range in ABAAS 1011.5.2. Ensure the height of the cooking surface is 15 inches to 34 inches above the finished floor or ground surface. All fire rings should have a 48-inch by 48-inch minimum clear maneuvering space around all usable sides. To the greatest extent possible, ensure all fire rings are accessible. Consider the relationship between the grill location and picnic table so there is easy maneuverability for wheelchair users while cooking (figures 3.117 and 3.118).

Figure 3.116 Fire pit with clear space, plan view.

Figure 3.117 Greenbelt Park, Maryland, Greenbelt Park Campground.
Design Considerations. Consider the placement of tent pads and location of shrubs, brush, and trees when siting fire ring location to reduce potential fire hazards. Place fire sites downwind from picnic tables (based on prevailing wind direction) to minimize fire hazards and smoke in the picnic area. Ensure the ground surface under the fire ring and extending two inches beyond the edge of the fire ring is of compacted road base or gravel. Use fire-resistant materials that are historically and architecturally consistent with the setting, as well as construction techniques, such as enclosing overhangs and eves, to minimize the risk of fire damage. Avoid the use of non-fireproof concrete due to the danger of extremely hot concrete exploding. Construct and maintain a firebreak around facilities to reduce potential wildfire impacts. Consult with wildland fire specialists to determine if there are any local requirements that should be considered in the design of fire pits and grills. Where grills are provided, consider providing a metal trash container for spent charcoal to reduce fire danger.

Bear Boxes / Food Lockers

Typically used in bear country, bear boxes, also known as food storage lockers, are important amenities to protect visitors and wildlife (figure 3.119). Bears, coyotes, and raccoons can break into a wide variety of trash containers. Bears have been documented breaking into vehicles, including car trunks, to access stored food. Once a bear has discovered a campground is a reliable food source, break-ins may become habitual and force the need to relocate or destroy a bear. Bear boxes should be used to store all food and drinks, toiletries and scented items, ice coolers, dishes, and undisposed trash and recycling. Campgrounds in bear country should provide at least one metal food lockers for each campsite. Group campsites should supply multiple food lockers or a larger secure shed to match the occupancy of the group site. Mechanisms on animal proof containers do not meet the accessibility requirement for pounds of force required and are exempt. However, access to each food locker is still required to meet guidelines for clear ground space and firm and stable surfaces (figure 3.120). In some locations a cook shelter may be used to minimize the location of food scents. (figure 3.121)
Hammock Hangers

Hammocks are an emerging use in campgrounds that has increased exponentially in popularity over the last five years. Providing hammock stands or hangers increases opportunities for the visitor while protecting park resources. Hammock hangers can prevent tree damage caused by hammock hanging and facilitate the ease of visitors hanging hammocks for relaxation. For some visitors, hammocks are preferred over tents for sleeping. A simple hammock pipe stand is low cost, sturdy, and provides ample room for hanging hammocks at campsites. Multiple hammocks can be hung using one central post and concentric posts around the hammocks to accommodate group hammock setups as well. As a new use, no standard accessibility guidelines exist specifically for hammock hangers. However, basic accessibility regulations include provision of an accessible route, firm and stable surfaces, and appropriate reach ranges for all amenities.

This emerging use can also be managed in park camping regulations. An example from Blue Ridge Parkway consists of the following:

- Hammocks may be used within established campsites. Established campsite is defined as within 50 feet of the existing grill/fire pit. They must be at least 20 feet from any public use areas such as trails, water spigots, restrooms, or other facilities.

- Hammocks may not be connected or tied to any facility. If tied to a tree, the tree must be at least 4 inches in diameter and anchor ropes/webbing must be \(\frac{1}{2} \) inch or greater in width. Padding must be used if less than \(\frac{1}{2} \) inch in width. Trimming of trees and underbrush is prohibited.

- Hammock hangers can be simply constructed from metal pipe.
Light Posts / Lantern Hangers

Light posts or lantern hangers are a convenient way to provide light and protect trees from damage (figure 3.122). Visitors provide their own hanging lights and can use a hanger if provided. Without a hanger, visitors may use nearby trees and potentially cause resource damage. The recommended distance from the ground to the lantern hanger is about 80 inches; a lower hook between 15 inches and 48 inches from the ground should also be installed to ensure the hanger is usable to those sitting in a wheelchair (ABAAS 308).

Figure 3.122 Lantern hanger at Mammoth Cave, Kentucky, Houchin Ferry Campground

Expanded Campground Services

Showers

Showers can be provided as an addition to the basic comfort station building (figure 3.123). Ensure the shower rooms are separate from the rest of the building, with entries located on the exterior of the building. The building should feature energy-efficient lighting, and the water should be heated by solar energy if possible. A common modern design is for a shower house to have individual family bathrooms that include toilet, sink and shower. This design is used at Price Park in Blue Ridge National Park. Like comfort stations, separated unisex showers are recommended because they provide flexibility for family groups, allow family members to better assist users with varying abilities, are gender neutral, and provide separation from other campers.

Figure 3.123 Gulf Islands National Seashore, Florida, Mississippi, Fort Pickens Campground restroom and showers combined in gender neutral areas.
Distance and Ratios

In a campground design, ensure there is a minimum of one shower per 20 to 25 people or four to five campsites, understanding that most bathing occurs in bursts in the morning or evening. The recommended distance from the shower to campsite is 250 to 500 feet from the farthest accessible campsite. An inclusive campground aims to provide all campsites to within roughly the distance, realizing that this is not always achievable. Showers may not be distributed throughout the campground like comfort stations. Regardless, parking should be provided at a shower facility. The recommended distance from the shower to parking is 35 feet; allow for one parking space for every five shower stalls plus accessible spaces per ABAAS F208.

Design Considerations

See “Determining Water and Wastewater” for anticipated water usage.

A quality shower facility will include sufficient hot water, odor-free private shower stalls, and dressing areas with adequate nonslip sloping floors to prevent any water collection. For larger shower facilities, especially if combined with a laundry facility, a boiler system with hot water holding tanks may be the most efficient means of providing hot water to many users at the same time.

Building design. Shower facilities can be designed with either gendered or gender-neutral shower and dressing rooms. For gendered showers, include a communal dressing area, which can help reduce space requirements. The gender-neutral design allows for private use by either gender, and generally better accommodates families and those requiring assisted care. Gender neutral shower facilities also provide a constant supply of showers for the public (instead of one gendered facility reaching capacity while the other remains available), provide more efficient maintenance (not requiring a closure of an entire male or female shower at once), and improve administrative controls by allowing closure of individual showers for emergency repairs.

Plumbing chase / storage area. In cool climates, the plumbing system must be winterized. Depending on location, winterization can consist of heating the plumbing or completely draining the system. The latter method is most common but requires a central fall point for draining the water out of fixtures, water heaters, and service lines.

Surface materials. The following wall surface materials are both durable and easy to clean such as: porcelain enamel on steel, reinforced fiberglass, glazed masonry block, and ceramic tiles. The following floor surface materials are durable, easy to clean, and slip resistant: unglazed quarry tile, and quartz broadcast epoxy-resin topping. The condition of the existing concrete floor surface or substrate will determine what surface coverings (i.e., tiles, resin coatings, or toppings) are feasible. Irregularity in the substrate is difficult to correct with tile flooring or resin coatings. When using tiles for the floor surface, small one-inch square tiles are more slip resistant than larger tiles. Be sure to use a surface sealant for all tiling to help reduce trapping dirt and soap. The slope for flooring must be no greater than two percent.

Dressing area. Dressing areas need to be clean with a dry floor surface. Provide separation from the shower to the dressing area to decrease shower water from spilling into the dressing area. Consider integrating the following items into a dressing area:

- Small cubby or locker for personal belongings
- Sturdy shelf
- Waste receptacle
- Numerous sturdy clothing and bag hooks (ensure both high and low heights for accessibility)
- Benches (plastic top with steel support brackets)
- Mirror
Construct all shelves, waste receptacles and other protruding fixtures from noncorrosive material and have rounded corners/edges to reduce the risk of serious injuries during an accidental slip or fall. In addition to benches for changing indoors, provide waiting benches in a sheltered outdoor space at the shower facility.

Shower plumbing systems. The three principal components common to all shower plumbing systems include: shower control valve, shower head, and water heater.

Shower control valves. Control fixtures for shower facilities can either be manually controlled (allowing temperature and volume to be controlled by the user) or automatically controlled (temperature, volume, and/or duration preset for the user). Manual controls are the simplest to operate and most familiar to the user. Manual controls provide the greatest user satisfaction but promote little if any water/energy conservation. Automatic controls provide the user with little or no means of customizing the shower to his/her comfort level, but they can also be preset to meet the needs of a wide range of user preferences. Automatic controls help reduce operating costs, including water consumption, waste treatment, and heating fuel. Comfortable water temperatures will range from about 90° F to 95° F. Showers should have scald prevention. Parks may choose to install coin operated shower controls.

There are three types of valves typically used in showers: flush, metered/timed, and thermostatic.

- Flush valves are very durable and have a lever or push button actuator to trigger the mechanically metered flush valve.

- Metered or timed valves, on the other hand, are designed to actuate mechanically, pneumatically, or electronically and then self-close after a set period or cycle. The valves are manufactured with fixed cycles or with field adjustable cycles, ranging from 5 to 60 seconds. Metered valves are generally smaller than flush valves, allowing installation in confined plumbing chases.

- Lastly, thermostatic mixer valves have an automatic control fixture with a metered “on-off” valve. Thermostatic valves do not have the capability of mixing hot and cold water to a usable temperature, so a temperature regulating device or “thermostatic mixer” valve must be installed between the water supply lines and automatic control valve. The mixer valve regulates the water temperature for the user at a set level selected by the facilities manager and serves as an anti-scald valve to protect the user during use. The thermostatic mixer senses any sudden change in water supply pressure or temperature (i.e., a drop in cold-water pressure due to someone flushing adjacent toilets on the same water supply line) and responds by instantaneously adjusting the amount of hot water delivered to the automatic control valve.

Shower heads. The conventional household shower head passes water at a rate of four to eight gallons per minute (gpm). Water saver or “low-volume” shower heads restrict water flows down to 1.3 gpm. Though water saving shower heads reduce consumption, they also result in a more noticeable effect of hot water scorching when the cold-water pressure suddenly drops (from a toilet flushing, for example).

Water heaters. Depending on energy resources available (i.e., solar, gas (natural or propane), or electricity), the water heater can influence annual operating cost for the entire system. Electric water heaters are high energy consumers, usually requiring a 220-volt electrical source and have a slow recovery (time required to heat or recharge the tank to full hot water capacity at the selected temperature setting). The typical tank capacity of electric water heaters required for public showers range from 80 to 120 gallons, depending on use.

Gas (propane or natural) water heaters can be operated economically in areas with ample supply of these energy resources. Gas heaters have faster rapid recovery than electric water heaters. Unlike electric heaters, gas heaters produce exhaust that must be insulated and vented out of the building.
In remote locations, propane storage tanks can present a problem due to vandalism, leaks, etc. If a gas water heater is being considered, ensure provisions for safeguarding against these problems are considered beforehand.

Instantaneous water heaters are also known as “tankless,” “inline,” or “on demand” water heaters, were developed to conserve energy by heating water only during the period of demand. The water temperature can be pre-set at the heater to prevent scalding, eliminating the need for thermostatic mixer valves. Instantaneous water heaters can be installed in groups to serve several showers simultaneously and can be powered by natural gas, propane, or electricity.

Solar water heaters can be used where sunlight is readily available, as an inexpensive source of hot water. Solar water heating can be unpredictably reliable due to changes in weather and should therefore be used as a supplement to conventional gas or electric heating systems.

Accessibility. All newly constructed and reconstructed shower facilities must be made accessible to people with disabilities.

In a new shower facility, all shower stalls must be accessible to meet code requirements (figure 3.124). The design must include the following hardware: waterproof shower seat, grab bars, and a lever or push-button type control fixture. The shower head should be hand-held or dual fixed mounted to allow coverage over the entire body. In addition, five-foot-wide accessible concrete walks need to connect the front covered entry to the shower entrances. The interior of the shower areas should meet accessibility standards, including dimensions of the room (transfer shower or roll-in shower), and placement of the transfer seat, clothes hooks, and dressing room bench. Shower controls should be 48 inches maximum above the shower floor, and for transfer type showers only, 38 inches minimum from the shower floor with the shower head located in this range. Roll-in shower types do not have a height requirement for where the shower head should be located. Standard height for shower heads is 80 inches from the shower floor. Showers that are separate from the rest of the building and located on the sides of the building should meet accessibility standards. Reference ABAAS F213.2.1, F213.3.6, F213.3.7, and 608.
O&M - Showers:

- Self-cleaning shower heads can also help reduce the accumulation of sediment and minerals and should be considered in areas with high mineral content.

- Provide proper ventilation to prevent mold and mildew from accumulating in shower facilities. Mechanical ventilators or fans are the most effective method of circulating air, and passive venting with vaulted ceilings, screened windows or vents installed near the ceiling can be similarly effective.

- To prevent mold and mildew on the floors, install curved floor corners to help ease cleaning.

- Provide service faucets to assist maintenance personnel in cleaning each shower compartment. Ensure this faucet is concealed inside a recessed wall enclosure to reduce vandalism.

Dump Stations

Dump stations can be incorporated into campgrounds that serve RVs to provide a way for visitors to empty RV sewage holding tanks (figure 3.125). Design and install dump stations at developed recreation sites where commercial RV sanitation stations are not available within a reasonable driving distance and where wastewater utilities are present. A dump station should include a clean-out or drain hatch and a non-potable water tower (a flexible water hydrant that keeps the hose off the ground) with a backflow device. The water tower is labeled as non-potable because it is used to clean out RV sewage holding tanks. Locate potable water after the dump station, where it cannot be accessed during the clean out process. The recommended distance between potable and non-potable water towers at the dump stations is 40 to 60 feet to prevent contamination; however, verify that this meets state Department of Quality requirements. Potable and non-potable water sources should be clearly labeled.

Figure 3.125 Sleeping Bear Dunes National Lakeshore, Michigan, Platte River. Campground dump station includes an accessible RV parking lane with island access aisle to approach station components.
Distances and Ratios

In most designs, the station should accommodate the concurrent servicing of at least two vehicles, which includes two clean-out or drain hatches (figure 3.126). The additional accommodation will provide a back-up, in the event one side must be closed for maintenance or unplanned repairs. Two dump stations are appropriate for most campgrounds; however, more may be needed if the campground observes significant wait times and RV queue lengths. If wait times are significant and the site cannot accommodate additional dump stations, consider providing reservation windows for post-stay dump station use. However, in general, a campground should provide a proper queue length for RVs to wait for the dump station. Campground dump stations are most often busiest during the campground check-out time.

Figure 3.126 Plan view of a dump station.
To calculate the queue length, consider the average RV length (i.e., boating areas will often have longer vehicle lengths), the anticipated number of users, and an estimated 15 minutes per RV to dump, flush and refill.

An RV unit’s sanitary sewer service connection is typically on the rear 1/3 of the unit on the driver’s side; consider this when locating the clean-out or drain hatch. A pull-through service station should be 100 feet long and on level ground not exceeding 2% slope in any direction. The service connection should be located at the ground level and the surface of the parking area should be above the clean-out or drain hatch to ensure proper gravity flow into the dump station and to minimize accidental spill of sewage.

Accessibility. Because RV dump stations are accessed by vehicle, an outdoor recreation access route (ORAR) is not required to connect to RV dump stations. An accessible vehicle pull-up space is required. An accessible vehicle pull-up space must be a minimum of 20 feet wide and contain specific clear distances for utility and sewage lines as outlined here: [ORAR](#).

Specifications applicable to mechanical controls and surface grades must be applied. Ensure that all devices at the dump station incorporate controls without the need for excessive grasping or twisting, and accessible slopes and surfaces to approach dump stations are provided.

O&M - Dump Station

Consider the safety requirements of the dump station. Dump stations can be operated by a credit card where the dump station is locked until payment is provided. Often, staff should be present during peak use so that dump station users do not dump improperly or prop the service connection open for other users to avoid payment.

- In most states the Department of Environmental Quality requires a flow meter on the effluent side to determine the amount of waste. Check with the state DEQ to determine if this is a requirement.
- Septic systems (i.e., septic tanks and leach fields) are not ideal for dump station use. This is because the characteristics of RV waste are similar to chemical toilet waste, and the bacteria in the ground cannot function as well with the concentrated waste. Additionally, there is often an accumulation of ammonia levels that exceed state Department of Environmental Quality allowances.
- Provide operation instructions using simple signage. (figure 3.127)

Reference [ABAAS F244.4](#), [F244.5.2](#), [1011](#) and [1012](#).
Laundry

Laundry buildings are designed for recreation sites with high visitation where the average length of stay is several days. Where appropriate, laundry facilities can be provided as an addition to the basic comfort station building or attached to a camp store. Laundry should be located at the rear of the building and accessed by a separate covered entry. Laundry services may also be needed for volunteer campground hosts. Machines are typically coin or credit card operated (figure 3.128). In addition to washing machines and dryers, provide a table for staging and folding. If the facility is not attached to a camp store, provide a coin or credit card operated vending machine with detergent and other laundry supplies.

Accessibility. There should be a clear space in front of the machines that is a minimum of 30 inches by 48 inches and positioned for a parallel approach, or 30 inches by 52 inches as a best practice (ANSI 305.3.1). Operable parts, including doors, lint screens, and detergent and bleach compartments need to be within reach ranges prescribed in the standards. Controls and operating mechanisms at laundry facilities should be operable with one hand and should not require tight grasping, pinching, or twisting of the wrist. The force required to activate operable parts should be five pounds maximum. Top loading machines should have the door to the laundry compartment located 36 inches maximum above the floor. Front-loading machines should have the bottom of the opening to the laundry compartment located 15 inches minimum and 36 inches maximum above the finish floor. Folding tables, vending machines, and other public use features in the laundry facility should be located on an accessible route, have the necessary clear space, and be within reach ranges. Reference ABAAS F214 and 611 for washers and dryers.
Car Charging Stations

Providing car charging at a campground helps accommodate those who drive electric-powered vehicles, especially in remote areas far away from urban centers. Car charging may be provided at specific campsites or may be provided in a central car charging area (figure 3.129). Car charging is typically provided by concession or by agreement. Be aware that it is illegal in some states for the federal government to resell electricity; this was a federal law that changed in 2019 to be individually state mandated. Depending on the state, a park may or may not be able to collect a fee for car charging. In some locations it is legal for a concessioner to provide this service, but not for a federal government to do so.

Configurations and requirements for car charging stations go beyond the scope of this guide (figure 3.130). Additional resources may be found:

- [Electric Vehicle Charging Station Installation Guidelines](#)
- [Siting and Design Guidelines and Electric Vehicle Supply Equipment](#)

Figure 3.129 Example of Electrical vehicle charger installed at Catoctin Mountain Park, Maryland. Charger installation requires a transformer that can accommodate the charging stations. This may require a new transformer, new panel, new disconnect switch, meters, bollards, electric vehicle parking signs and striping, electrical conduits, and the charging stations themselves.

Figure 3.130 Plan view of a van-accessible charging stall.
Operations and maintenance considerations are tied to specific facility improvements and details on best practice considerations were included throughout previous document sections using callout boxes. Good design ensures ease of maintenance and operations. It is important to engage facility and operation staff during planning and design. Collaboration is critical to understanding issues early in the design process and ensures challenges will be resolved through good design and construction practices.

Accessibility features, elements or components require ongoing maintenance to ensure continued compliance with standards. Unmaintained accessibility features are likely to quickly become inaccessible and no longer meet code requirements.
This section of the document includes best practices and is intentionally broad because specific operations and maintenance procedures will vary significantly by region.

Best practices to consider throughout design and construction:

1. Use consistent quality equipment, materials, and products.
 a. Avoid different materials in individual areas and different repair methods to streamline maintenance operations.
 b. Consider life-cycle replacement costs during design.

2. Design with maintenance in mind.
 a. Consider if products and replacement items are readily available. Can the design be repaired by park maintenance? How often is repair expected? If possible, avoid the need for long lead times and specialized repair personnel.
 b. Consider standardizing common facility elements (such as picnic tables, bathroom fixtures, etc.) across a park to streamline replacement stock.

3. When hiring outside construction services, require ‘As Constructed Drawings’ and ‘Operation and Maintenance Manuals’ to be included in the contract. This should be detailed in the project design specifications and be delivered to the park after construction completion. The documents will be valuable for finding and repairing utilities, for operation and maintenance requirements and schedules, for product information, and for warranties.
 a. Typically, a construction project will have a 1-year warranty starting at substantial completion of construction. Consider extended warranty periods if needed for special systems. Extended warranty periods should be detailed in the design specification and negotiated during the construction contract.
 b. Buy extended service contracts if needed for special systems.
 c. Require video instruction for training so that it’s available for change in maintenance staff. This can be included in Division 1 specifications.
 d. Make sure to file As-built drawings in https://pubs.etic.nps.gov/Default.aspx. This will ensure the carryover of important facility information.

4. Closures for large maintenance projects and site recovery.
 a. Anticipated maintenance projects and site recovery can be scheduled in a reservation system or using closure announcements for first come first serve areas. Areas should be closed in a clear way that the public can understand and respect.
 b. Plan in advance for large maintenance closures such as waterline repair, building repair, and other maintenance activities that will impact the campground use.
 c. Site recovery for natural resources in sensitive areas may include repairing compacted areas, social trail closure, and revegetation.

5. Build out routine or cyclic maintenance schedules in advance by detailing needs for yearly, quarterly, monthly, and weekly activities.
 a. Routine or cyclic maintenance may include items such as:
 i. Checking clean-outs, inlets, culverts, and manholes, for obstructions;
 ii. Review of mechanical systems such as lift stations, transfer stations, pumps, and sumps;
 iii. Monitoring building fixtures (sinks, toilets, showers) and lighting;
 iv. Seasonal start-up of winterized systems; and
 v. Winterization of systems for closure.
Appendix A: Bibliography

Cordell, H., and James, G. 1973 Visitor Preferences for Certain Physical Characteristics of Developed Campsites. School of Forest Resources Department of Recreation Resources Administration North Carolina State University at Raleigh.

Dolan, Susan 2020 Personal Communication with Julie McGilvray.

Grasslands. US Department of Agriculture: FS-710.

McGilvray, Julie
2017 “Badlands Design Guidelines.” Report prepared for the National Park Service in collaboration with the Midwest Regional Office and Badlands National Park, The University of Texas Austin School of Architecture, and the Lady Bird Johnson Wildflower Center.

Mills, James
2020 “Here’s how national parks are working to fight racism.” National Geographic. https://www.nationalgeographic.com/travel/national-parks/more-diversity-how-to-make-national-parks-anti-racist/#close

Model T Ford Forum

Musselwhite, Phil

Parks Canada

PBS (Public Broadcasting Service)
2009a National Parks History. WETA, Washington, DC and The National Parks Film Project, LLC. http://www.pbs.org/nationalparks/history/ep4/

Repanshek, Kurt

Treib, Marc

Unknown

US Department of Agriculture, Forest Service

US Department of the Army, US Army Corps of Engineers.

US Department of the Interior, Bureau of Reclamation

US Department of the Interior, National Park Service (NPS)
1959 Campground Study: A report to the Committee to study camping Policy and Standards. Region Four.
1984 Park Road Standards.
2010 Rocky Mountain National Park Design Guidelines.
2018 National Park Service Active Transportation Guidebook: A Resource on Supporting Walking and Bicycling for National Parks and their Partners.

US Department of Transportation

2012 USDA & USDOT. Accessibility Guidebook for Outdoor Recreation and Trails.

Wilder

Young, Terrance

Appendix B: Historical Campground Timeline

1841 A. J. Downing writes “Treatise on the Theory and Practice of Landscape Gardening”—influenced by English garden design of the 18th and 19th century and adapted these to the American landscape—fostering a strong awareness and appreciation of the native landscape of the sublime and picturesque.

1858 Olmsted and Vaux submit winning design for New York’s Central Park, marrying the picturesque with the naturalistic of the pleasuring ground in park design following Downing’s influence and setting the stage for early park design of the twentieth century. The park is more naturalistic than gardenlike.

1872 Yellowstone National Park established and envisioned as “a public park or pleasuring ground for the benefit and enjoyment of the people.”

1915 Mark Daniels states that park development should be three-tiered for accommodation with a call for permanent camps with access to food (dining establishments) and for camps in tent where visitors could prepare their own food with food available from a camp store, presented at the National Park Conference in San Francisco.

1916 Stephen Mather writes “Progress in the Development of the National Parks” in which is set forth his vision for the national parks comprehensively and as a system. To this accessibility was key—by rail or roadway.

1916 Stephen Mather envisions a National Park-to-Park highway Association connecting western parks as visitation increases dramatically (see 1914 to 1917 numbers in text). Free Automobile camps open in each park with services such as water, cooking grates, and toilet facilities. These are created in cleared areas with access to nearby supplies and fuel. (McClelland 1998)

1916 American Society of Landscape Architects (ASLA) holds conference devoted to the subject of national parks and the bills pending before congress to create the National Park Service.

1917 National Park Service takes administrative control of the existing national parks. There are 17 national parks and 22 monuments.

1918 Secretary of the Interior Franklin Lane establishes a policy for landscape preservation and harmonization to guide all park development and use.
1918 Secretary of the Interior Franklin Lane creates a statement of policy for the National Park Service. In this, he creates three fundamental principles supporting the 1916 Organic Act. From this, focus on accommodations should serve various classes of visitors from low-priced camps to high-end hotels. This included, as funds allowed, the National Park Service would create and maintain a system of free campsites. These would be in cleared areas with water and sanitary service. (McClelland 1998, p 135)

1918 Mather appoints Charles P. Punchard Jr. to the role of first landscape engineer to the National Park Service. In Landscape Architecture Magazine, Punchard describes his work as one of “control” balancing preservation with improvements for the comfort and accommodation of visitors – he believed this balance could be achieved over time with careful planning (McClelland 1998, p. 137).

1920 Daniel Hull hired by Mather to assist Punchard as the rise for landscape architecture grew. Hull became the Senior Landscape engineer in Nov. 1920. (McClelland 1998, p. 159). He stays at the National Park Service from 1920–27 when the design office (Landscape Division) is moved to San Francisco.

1924 Congress granted appropriations annually for the development of roads and trails in national parks.

Early 1920s Housekeeping camps are introduced as a concept. This type of camp helps standardize cabin and other building design to be used throughout the new deal era.

1926 The National Park Service signs cooperative agreement with Bureau of Public Roads under which park roads attained the most up to date standards of road design (McClelland 1998, p. 196).

1927 Thomas Vint takes over Landscape Division from Hull. By this time, the role of the landscape engineer is focused in three ways locating and designing park roads, designing park structures, and reviewing concessioner plans and designs. Vint was the “genius” behind his program of master planning for the National Park Service creating design standards to meet the dual mission of the National Park Service. (McClelland 1998, p. 196).

1927 Expansion of NPS Landscape Division—Mather creates the field headquarters in San Francisco as an office of design specialists set up to advice the director and superintendents in park design, development, and management (McClelland 1998, p. 196).

1928 Many rustic/naturalistic design model principles and practices (rather than prototypes and standard designs) begin to show up in contracts/plans—this distinguished the design of the National Park Service and leads to originality of ideas and diversity of expression.

Late 1920s Education structures such as waysides and amphitheatres emerge as designed elements in the parks (McClelland 1998, p. 249). Their designs also draw heavily from the traditions of rustic architecture and naturalistic gardening (McClelland 1998, p. 250) with origins in the 1910s and 1920s.
1929 By this time, Vint has transformed the landscape division into a true design office with an increased emphasis on general planning (to create a general development plan for each park) with park superintendents as clients (McClelland 1998, p. 200).

1930 Policy introduced prohibiting the introduction of exotic plants to parks. This was considered landscape “naturalization” and came to be known as beautification program in the 1930s and was carried forward by the Civilian Conservation Corps (CCC) (McClelland 1998, p. 264).

1931 “Camps in the Woods” is written by Augustus D. Shepard, an architect of the Read Camp. The book follows the development of the Adirondack style. It was recommended by NPS chief landscape architect Thomas Vint as a useful reference for park structure design. The National Park Service followed this format for the 1935 Albert Good’s book “park structures and facilities.”

1932 By this time, amphitheaters have become an important structure in campground design. Designed for evening ranger talks. Their early design was primarily based on the adaptations of Maier’s woodland theater with a semicircular design located in a forest setting...radiating aisles and arcs of seating descending the slope toward the stage often with a campfire circle and a screen. During this time, other educational structures are built with campgrounds such as nature trails, lookout shelters, nature shrines, and campfire areas. (McClelland 1998, p. 254).

1932 E. P. Meinecke writes the “Campground Policy. The beginnings of CCC/Emergency Conservation Work coincide with the USFS introduction of a new approach to campground design called the Meineke Plan.

1932 Efforts that started in the 1920s to design and schedule park construction evolved into a program of master planning, creating six-year park improvement programs. The term “master plan” is stated for the first time for the National Park Service by Horace Albright at the 12th meeting of NPS executives at Hot Springs National Park. Albright stated that the primary purpose of the landscape division was to prepare master plans for all parks in the east and west. All plans were completed for all park units by the end of 1932 (McClelland, 1998 p. 302–303). They included a park development outline, general plan, and a six-year program. Campgrounds were typically found in the “minor” development areas (McClelland 1998, p. 304). These plans were updated annually from 1932 until 1942.

1933 CCC is formed as the Emergency Conservation Work agency.

1934 E. P. Meineke writes Camp Planning and Camp Reconstruction. It is immediately adopted by the National Park Service with a revision in 1934 and becomes the basis for many innovative site plans and facilities for camping in National Park Service and state park design.

1934 The National Park Service produces publications on park design Portfolio of Comfort Stations and Privies; Portfolio of Park Structures – Wirth Hired Dorothy Waugh to complete these. She is the daughter of Wirth’s teacher and mentor Franch Waugh (MA ag college). The functionality of these two publications was critical – they were created as leafed binders so new designs could be easily inserted. The idea was to get new design concepts out to the CCC as quickly as possible. These two volumes addressed many small structures located in campgrounds.
1934 Thomas Vint, under the new title of Chief Architect for the National Park Service moves to Washington, DC, to head the Branch of Plans and Design. C. Peterson leads the Eastern Division office out of Yorktown, and William G. Karnes led the Western Division (McClelland 1998, p. 330).

1935 Albert Good edits Park Structures and Facilities for the National Park Service. This builds upon Waugh’s portfolios of 1934 but is in a different format. It is a bound book with photographs and drawings of successful design work completed by the CCC for state, and national parks (with heavy focus on state parks)

1935 Frank Waugh writes Landscape Conservation, which gives instructions on blending the edges of lakes, ponds, and plantations through a process of studying the recreating naturalistic zones based on underlying natural systems soil, climate, etc. Based on assistant NPS director’s Conrad Wirth’s request (Wirth is Waugh’s former student).

1939 CCC is heavily scaled back and loses status as an independent agency. The National Park Service begins to pull design work into regional offices and out of individual camps to handle downsizing.

1939 Shenandoah National Park selected as the first desegregated site within the National Park Service (Young 2009)

1941 Henry Hubbard writes article for the 1941 Yearbook Park and Recreation Progress entitled “The Designer in National Parks” laying out the park designers’ approach and aligns this with the preservation of natural character.

1942 CCC is terminated by July 1, 1942. In response, with fewer designers and capability to visit parks/familiarity with park needs/resources, designers advocate for more functional design, use of modern materials, streamlined forms, and mechanized technology. (McClelland 1998, p. 452)

1945 Interior Secretary Harold Ickes issued a bulletin mandating desegregation in all National Park Service sites. Prior to this time, NPS sites abided by state segregation laws. (Mills 2020).

1952 Cecil Doty promoted to regional designer by Vint to allow him to focus on design (Carr 2007, p. 147). Doty becomes a critical figure in NPS design much like Maier.

1954 Federal Highway Act of 1954 helps parks with flood of visitors by providing three years of funding for park road development.

1955 Fifty million visitors visit national parks – The parks were equipped to handle half that number. Park visitors want a different experience at this time and park visitation areas are too small and in poor condition.
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>Following Mission 66’s first year, 1,150 projects set as part of the initial construction program at a total of $75 million with room for 2,300 additional visitors, 930 new, and 1,300 improved campsites (McClelland 1998, p. 469)</td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>Mission 66 program has completed 3,200 campsites. 1961 Thomas Vint retires.</td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>The National Park Service had developed 7,000 individual campsites and rehabbed another 4,000 (Carr 2007, p. 292) with hundreds of campfire circles and amphitheaters created. (Carr 2007, p. 293)</td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>Leopold Report – stresses importance of native flora/fauna in park units and park preservation.</td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>Wilderness Act.</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>NPS Wilderness Guidance – sets structure to and limits development in designated Wilderness in parks.</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>The Architectural Barriers Act (ABA) is one of the earliest measures by Congress to address access to the built environment, requiring facilities designed, built, altered, or leased with federal funds to be accessible according to established standards.</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>The Rehabilitation Act of 1973, Section 504 requires access to programs and activities that are funded by federal agencies, including provisions for effective communications and equal benefit. Later amendments strengthened requirements for access to electronic and information technology (e.g., websites and electronic interpretive media) in the Federal sector (Section 508).</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>DO#42 came out and provided a comprehensive approach to providing accessibility for visitors with disabilities in programs and services.</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>National Park Service formed the Accessibility Task Force to improve an organizational approach to ensuring that national parks can be enjoyed by people with disabilities.</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>The Great American Outdoors Act (H.R.1957) was enacted into law. The single largest investment in public lands in United States history, the landmark legislation established a new National Parks and Public Lands Legacy Restoration Fund to address the maintenance backlog on public lands and to guarantee permanent full funding for the existing Land and Water Conservation Fund.</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>The National Park Service Second Century Campground Design Guide is released.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C: Contributors

Primary Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jessica Hendryx Brown</td>
<td>Landscape Architect</td>
<td>Grand Teton National Park</td>
</tr>
<tr>
<td>Tessa Buono</td>
<td>Natural Resource Project Specialist</td>
<td>Denver Service Center, Planning</td>
</tr>
<tr>
<td>Mindy Burke</td>
<td>Contract Editor</td>
<td>Denver Service Center, Planning</td>
</tr>
<tr>
<td>Tamara Delaplane</td>
<td>Project Manager</td>
<td>Denver Service Center, Planning</td>
</tr>
<tr>
<td>John Paul Jones</td>
<td>Visual Information Specialist</td>
<td>Denver Service Center, Planning</td>
</tr>
<tr>
<td>Andrea Lind</td>
<td>Landscape Architect, Project Manager</td>
<td>Denver Service Center, Design and Construction</td>
</tr>
<tr>
<td>Julie McGilvray</td>
<td>Regional Historical Landscape Architect</td>
<td>Interior Region 1—National Capital Area</td>
</tr>
<tr>
<td>Mark Pritchett</td>
<td>Special Projects Program Manager</td>
<td>Denver Service Center, Transportation</td>
</tr>
<tr>
<td>Carol Sperat</td>
<td>Landscape Architect, Project Specialist</td>
<td>Denver Service Center, Design and Construction</td>
</tr>
<tr>
<td>Devon Vig</td>
<td>Landscape Architect, Project Specialist</td>
<td>Denver Service Center, Planning</td>
</tr>
<tr>
<td>Doug Wewer</td>
<td>Civil Engineer</td>
<td>USDA Forest Service, R4 Facilities Design Team</td>
</tr>
</tbody>
</table>
Additional Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abigail Aldrich</td>
<td>Project Manager</td>
<td>Harpers Ferry Center Sign Program</td>
</tr>
<tr>
<td>Dennis Bartalino</td>
<td>Facility Manager</td>
<td>Big Cypress National Preserve</td>
</tr>
<tr>
<td>Jeff Beauchamp</td>
<td>Supervisory Revenue & Fee Business Specialist</td>
<td>Acadia National Park</td>
</tr>
<tr>
<td>Christine Clark</td>
<td>Commercial Services Program Manager</td>
<td>Everglades National Park, Biscayne National Park</td>
</tr>
<tr>
<td>Marina Connors</td>
<td>Civil Engineer</td>
<td>Rocky Mountain National Park</td>
</tr>
<tr>
<td>Chris Finlay</td>
<td>Chief of Facility Management</td>
<td>Grand Teton National Park</td>
</tr>
<tr>
<td>Philip Gross</td>
<td>Maintenance Supervisor - Buildings, Grounds, & Historic Preservation.</td>
<td>Sequoia & Kings Canyon National Parks</td>
</tr>
<tr>
<td>Lauren Lainez</td>
<td>Acting Sign Program Manager</td>
<td>Harpers Ferry Center Sign Program</td>
</tr>
<tr>
<td>Isabel Loe</td>
<td>Civil Engineer</td>
<td>Grand Teton National Park</td>
</tr>
<tr>
<td>Jennifer Newton</td>
<td>Social Scientist</td>
<td>Grand Teton National Park</td>
</tr>
<tr>
<td>Justin Racioppi</td>
<td>District Fee and Permit Specialist</td>
<td>Glacier National Park</td>
</tr>
<tr>
<td>Eric Sherry</td>
<td>Chief of Maintenance</td>
<td>Assateague Island National Seashore</td>
</tr>
<tr>
<td>Alan Sumeriski</td>
<td>Chief of Facility Management</td>
<td>Great Smoky Mountains National Park</td>
</tr>
<tr>
<td>Margaret Wilson</td>
<td>Sustainability Coordinator</td>
<td>Grand Teton National Park</td>
</tr>
</tbody>
</table>

Agency Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Agency</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allysa Angus</td>
<td>Bureau of Land Management</td>
<td>Landscape Architect</td>
</tr>
<tr>
<td>Dan Bortner</td>
<td>Indiana State Parks</td>
<td>Indiana State Parks Director, President of the National Association of State Park Directors</td>
</tr>
<tr>
<td>Valerie A. Heath-</td>
<td>Bureau of Reclamation</td>
<td>Outdoor Recreation Planner</td>
</tr>
<tr>
<td>Harrison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don Stier</td>
<td>Missouri State Parks</td>
<td>Missouri State Parks</td>
</tr>
<tr>
<td>Scott Strotman</td>
<td>US Army Corps of Engineers</td>
<td>Natural Resources Management Branch, Recreation Program and Business Line Manager</td>
</tr>
<tr>
<td>Jason Zimmerman I</td>
<td>Pennsylvania Department of Natural Resources - Bureau of State Parks</td>
<td>Pennsylvania Department of Natural Resources, Bureau of State Parks Assistant Director</td>
</tr>
</tbody>
</table>
Additional Park and Program Contributors

Acadia National Park
Arches National Park
Assateague Island National Seashore
Big Cypress National Preserve
Bryce Canyon National Park
Catoctin Mountain Park
Chickasaw National Recreation Area
Craters of the Moon National Monument and Preserve
Denali National Park & Preserve
Everglades National Park
Glacier National Park
Grand Teton National Park
Great Smoky Mountains National Park
Kenai Fords National Park
North Cascades National Park
Ozark National Scenic Riverways
Redwoods National and State Parks
Sleeping Bear Dunes National Lakeshore
Washington D.C. Area Support Office (WASO) Social Science Program
Yellowstone National Park
This page intentionally blank.
As the nation’s principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historic places; and providing for the enjoyment of life through outdoor recreation. The department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

WASO 909/175256
May 2021